Georgia Mosquito Control Association Oct 17-19, 2007

First Session

- 1) Opening Remarks Donell Mathis
 - a) Washington Day
 - i) Discussed continuing federal funding for WNV
 - ii) Need for mosquito surveillance
 - iii) Clean Water Act info
 - iv) Talked to several Representatives
 - v) Favorable towards continuing funding
 - b) Importance of GMCA
- 2) Georgia Update Ros Kelly
- 3) Dougherty County Update Donell Mathis
 - a) 160,000 population
 - b) Surveillance
 - i) Passive complaints
 - ii) Landing counts
 - iii) Active WNV program (work with Health Department)
 - c) Control
 - i) Focus on larvicing
 - ii) Follow up with adulticiding
 - d) Mapping of "hot spots"
 - i) Vases in cemeteries are a big problem for *Culex* spp
 - ii) Problem with abandoned houses
 - iii) Trash piles in alleyways
 - iv) Tire piles work with Code Enforcement
 - v) Cypress swamps larvicide
 - e) Swimming pools
 - i) Not much problem with below-ground pools
 - ii) Big problem with above-ground pools
 - f) Old areas larviciding
 - i) Lots of treeholes fill with sand
 - ii) Low-lying areas
 - iii) Old wooded areas
 - iv) Respond to complaints
 - v) Catch basins
 - g) Adulticiding
 - i) Hand Fogger
 - (1) Ball fields
 - (2) Abandoned houses
 - (3) Crawl spaces
 - ii) Try to do all repairs in-house
 - iii) Keep equipment calibrated
 - iv) Spray all county every 8-10 days

- v) Respond to complaints
- h) Proper storage of chemicals and equipment
- i) Education program
 - i) Mosquito control
 - (1) Identification
 - (2) Control methods
 - ii) Diseases
 - (1) WNV
 - (2) Dog heartworm
 - iii) Hand-outs & prizes
- j) Complaints
 - i) Be fair
 - ii) Be consistent
 - iii) Be courteous
 - iv) Don't make promises you can't keep
 - v) Follow up
- 4) Industry Spotlight
 - a) ADAPCO aerial
 - i) Malcom Williams Chief Pilot (AVCS)
 - ii) Own, operate and maintain fleet of aircraft
 - iii) Can treat 30,000 60,000 acres in one evening
 - iv) Pilots do only mosquito control
 - v) Aircraft
 - (1) FAA-certified
 - (2) Only do mosquito control
 - vi) Equipment
 - (1) Wind-driven rotary atomizers
 - (2) AIMMS-20 weather monitoring system
 - (3) Cockpit GPS guided system (Wingman)
 - vii) High level of application accuracy
 - (1) Optimization drift technology (USA AG dispersal model)
 - (2) Night-time applications
 - viii) Contingency Contracts
 - (1) Many waivers and permits needed
 - (2) All preparations for facilities put in place
 - (a) Fuel
 - (b) Parking
 - (c) Chemical storage
 - (3) Insurance certification
 - (4) GIS mapping spray blocks
 - (5) Congested area contracts
 - (6) 24-48 hour response time
 - (7) Help with press coverage when contract is invoked
 - (8) Bring all needed equipment
 - (9) Can do efficacy monitoring
 - (10) Post-application reporting within 24 hours

- b) ADAPCO ground
 - i) Monitor 4 system
 - (1) Variable flow control
 - (2) Uses GPS for control and recording
 - (3) Data recorded
 - (a) Speed
 - (b) Flow rate
 - (c) Date/time applications
 - (d) Historical data
 - ii) Geotracker Mapping
 - iii) Download options
 - (1) Removable compact flash
 - (2) "Parking-lot" download option
 - (3) "Real-time tracking" option
- 5) Mosquitoes & Other Pest Management Operations on Military Installations Denny Kuhr
 - a) USACHPPM South
 - b) Many casualties from vector-borne diseases during military operations
 - c) Entomological Sciences Division
 - i) Train pest management and preventative medicine personnel
 - ii) Consultations
 - iii) Identification
 - iv) Vector-borne disease analysis and risk assessment
 - d) Installations
 - i) Army 17
 - ii) Air Force 17
 - iii) Navy -10
 - e) Key Personnel
 - i) Preventative medicine public health
 - ii) Pest management
 - iii) Certified pest controllers
 - (1) Forestry
 - (2) Ornamental/turf
 - (3) Aquatic
 - (4) Right-of-way
 - (5) Industrial
 - (6) Institutional/Structural
 - (7) Public Health
 - (8) Nuisance/Wildlife damage control
 - iv) Pest control contract inspectors
 - v) Golf course manager/Greenskeeper
 - vi) Natural resources
 - vii) Veterinary services
 - viii) Animal Control
 - f) Mosquito surveillance
 - i) Components

- (1) Larval survey
- (2) Adult survey
- (3) Sentinel chickens
- ii) Purpose
 - (1) Assess threat
 - (2) Identify mosquitoes
 - (3) Communicate problem
 - (4) Target problem
 - (5) Evaluate control
- iii) Key elements
 - (1) Liaison with local agencies
 - (2) Plan of control
- iv) Monitor spread of introduced species
- g) Control
 - i) IPM based
 - ii) Based on surveillance data
 - iii) Can do all kinds of aerial applications
- h) Other pest problems
 - i) Exotic pests
 - ii) Plant pests
 - (1) Herbicides
 - (a) Aerial
 - (b) Weedseeker system
 - (2) Prescribed fires
 - (3) Mechanical control
 - iii) Birds
 - (1) Trapping
 - (2) Shooting
 - (3) Rehabilitation/relocation
 - iv) Deer
 - v) Feral hogs
 - vi) Raccoons
 - vii)Beaver
 - viii) Badgers
 - ix) Skunks
 - x) Porcupines
 - xi) Rough fish
 - xii)Snakes
 - xiii) Fire ants
 - xiv) Africanized bees

xv) Flies

- xvi) Cockroaches
- xvii) Mites stored food products
- xviii) Rodents
 - (1) Pest control
 - (2) Hantavirus

- i) Work with endangered species programs
- j) Must know rules & regs for the area where the installation is located
- 6) After the Fire: Ware County Fires, Mosquito Surveillance, & Control Trey English
 - a) Wildfires April-June, 2007
 - b) Firebreaks used to try to stop fire from spreading
 - c) >600,000 acres burned
 - d) Timber companies moved into the area to salvage timber
 - e) Large areas of cut and replanted land row ditched
 - f) June 2007 heavy rain
 - q) Huge numbers of Psorophora columbiae resulted
 - h) ADAPCO called to do mosquito control
 - i) Surveillance using mosquito control trailer

 - ii) Created spray blocks
 iii) Waited for 2nd brood to come off before doing control to get all possible benefit from adulticiding
 - iv) Used dibrom excellent control
 - i) Mosquito problems directly related to fires
 - j) Timber companies need to take some responsibility
 - k) Working to design a larviciding program to assist with future problems
 - I) Problem will continue until trees grow
- 7) Larviciding Techniques for Underground Storm Drains & Bottle Bioassay of *Culex guinguefasciatus* exposed to Dibrom Concentrate - Richard Smith
 - a) Jacksonville, FL
 - b) Larviciding underground storm drains
 - i) Storm drains
 - (1) BENEFIT Storm drains provide a solution to roadside drainage problems
 - (2) PROBLEM Wonderful mosquito breeding sites
 - ii) Aerobic decomposition occurs
 - (1) Water enters from a variety of sources
 - (2) Organic debris and nutrients also enter system
 - (3) Nutrient soup results
 - iii) Stable system
 - (1) Minimal temp fluctuation
 - (2) Humid
 - iv) Mosquito control
 - (1) Filter systems sometimes used to reduce nutrient loading
 - (2) Public Works pumps the catch basins
 - (3) Larviciding
 - (a) Oils/Surfacants
 - (b) Bti
 - (c) Bs
 - (d) Altosid
 - (e) Temephos
 - v) Equipment

- (1) www.leisureequipmentInc.com
- (2) Modified jeeps for left-hand drive
- (3) Equipment cradles
- (4) Lights
- vi) Plan
 - (1) >60,000 basins cataloged
 - (2) Inspect first, then treat
 - (3) Larvicide at night
 - (a) Cooler
 - (b) Less traffic
 - (c) Parked cars are a problem
- c) Bottle Bioassays
 - i) Testing resistance of quinces to Dibrom
 - ii) Dibrom applied by aircraft for 30+ years in Duval County
 - iii) Seeing poor control
 - iv) Procedure
 - (1) <u>www.pherec.org/memoranda/procedures.html</u>
 - (2) Determine if resistance to Dibrom is occurring
 - (3) Saw 100% mortality after 75 minutes
 - (4) Resistance tests do not correlate to label dosage
 - (5) Must do a Lethal Dose Probit to infer label rates
 - (6) Additional testing is planned
 - v) Why the subpar control?
 - (1) Mosquito behavior
 - (2) Weather
 - (3) Mission timing
 - (4) Aerosal equipment, technique, dosage
 - vi) Useful tool to evaluate control efficacy
 - vii) Technique taught at Dodd Course
- 8) Dept of Ag Overview, Pesticide Regulatory Update Steve Cole
 - a) What's new?
 - i) New commercial exam process
 - (1) Jan 2007 computer exam
 - (2) Operated by Georgia Technical Colleges
 - (a) 25 Colleges involved
 - (b) \$45 exam fee
 - (c) <u>www.gapestexam.com</u>
 - (3) Advantages
 - (a) Plan your own exam date, time, & location
 - (b) More locations
 - (c) Instant exam results
 - (d) Quicker retakes
 - ii) Worker safety program
 - (1) EPA currently expanding pesticide worker protection programs to include all pesticide occupations
 - (2) Greater training requirements

- (3) Greater monitoring by GDA
- (4) No timeline for implementation as of yet
- iii) Mosquito control issues
 - (1) Commercial vs private license
 - (2) Training certifications
 - (3) Licensing
 - (a) More individuals getting licensed in Public Health
 - (b) Mosquito control category being developed
 - (i) Elmer Gray & Doug Jones
 - (ii) Subcategory?? Separate category??
 - (iii) Will still need to take the core exam
 - (iv) Working on details
 - (4) Misting Systems regulatory issues
 - (a) Used for a long time in horse farms in Texas
 - (b) May have some use in areas with bad mosquito problems and no control programs
 - (c) Waiting for EPA response
 - (d) Need specific label language
 - (e) Safety issues
 - (f) Control efficacy
 - (g) Company focus is on installation, not pesticide
 - (i) Uncertified applicators
 - (ii) Application actually done by homeowner
 - (iii) Unsubstantiated claims
 - (iv) Off site drift
 - (v) Exposure risks
 - (vi) Misuse
 - (vii) Discourages IPM
 - (viii) Resistance
 - (ix) Calibration issues
- iv) Pesticide misuse
 - (1) Baiting (predator control with pesticides)
 - (a) Illegal
 - (b) Dangerous
 - (c) Non-target impacts
 - (d) Risk to children and pets
 - (2) Careless use
 - (a) Usually involves poor storage practices and labeling
 - (b) Illegal & dangerous
 - (c) Need to be prepared for spills
 - (d) Always read the label
 - (e) Keep good records
 - (f) Don't get in a hurry
 - (g) Keep equipment in good repair
 - (h) Follow label instructions
- b) <u>www.agr.georgia.gov</u>

Second Session

- 1) Richmond County Mosquito Control Fred Koehle
 - a) 3 person crew
 - b) Seasonal entomologist
 - c) Problem areas
 - i) Pools
 - ii) Tire piles
 - iii) Trash dumps
 - d) Surveillance
 - i) Past
 - (1) New Jersey light traps
 - (2) Never ID or counted anything
 - (3) No plan
 - ii) 2007
 - (1) Hired an entomologist
 - (2) Had a plan
 - (a) 1 gravid trap
 - (b) 1 light trap
 - (c) 5 sites
 - (d) 4 trap nights a month (June-Aug)
 - (e) 2 trap nights in Sept
 - (3) ID'ed, counted and tested pools 1 WNV+ pool
 - (4) Created a reference collection
 - iii) Budget
 - (1) Asking for more money in 2007
 - (2) Due to surveillance:
 - (a) Didn't start soon enough
 - (b) Need another worker
 - (c) Need an entomologist
 - iv) Working relationships
 - (1) Augusta Cares Mayor's office
 - (2) Board of Education
 - (a) School education program
 - (b) Mosquito control at the schools
 - (3) Parks and Recreation
 - (4) Public Works
 - (5) Code Enforcement
 - v) Education
 - (1) Civic Groups
 - (2) School programs
 - (3) Community Education
 - (4) Computer program
- 2) Status of Arboviruses in North America John Edman
 - a) 7 mosquito-borne Arboviruses found in the US

- b) 3 viral families
 - i) Togoviridae (alphaviruses)
 - (1) WEE
 - (a) Serious but rare
 - (b) Virus still found but very few human cases
 - (c) Vector Cx tarsalis
 - (2) VEE
 - (a) Serious equine disease
 - (b) Mild human disease
 - (c) Needs a bridge vector
 - (d) Horses can infect mosquitoes
 - (3) ÈÉE
 - (a) Major vector found in wooded swamps
 - (b) Needs a bridge vector
 - (c) Reservoir birds
 - (d) Primarily coastal distribution
 - (e) Average # cases per year ~5
 - (f) Appears to be increasing
 - (i) Human encroachment into wetland areas
 - (ii) More surveillance due to WNV
 - (g) Surveillance is vital
 - ii) Bunyaviridae California encephalitis viruses
 - (1) LAC
 - (a) Wide distribution primarily Eastern US
 - (b) Vector Oc triseriatus
 - (c) Reservoir chipmunks and squirrels
 - (d) Average ~80 cases per year
 - (e) Transovarial and venereal transmission occurs
 - (2) No others of importance
 - iii) Flaviviridae
 - (1) WNV
 - (a) Activity increasing again in 2007
 - (b) Average ~2969 cases per year
 - (c) Primary vectors are *Culex* spp
 - (d) Migrating birds involved in spread
 - (e) Bird surveillance
 - (i) Numbers reported and found positive usually rose before human cases were reported
 - (ii) Not so predictive any more
 - (f) Old world virus introduced to US in 1999
 - (g) Spread to every state except Hawaii & Alaska in 5 years
 - (h) Kills many new world bird species
 - (i) Overwinters in mosquitoes and birds
 - (2) SLE
 - (a) Closely related to WNV
 - (b) Widely distributed

- (c) # cases seem to be dropping
- (d) Average ~111 per year
- (e) Does not cause disease in equines
- (f) Naturally cycles in peridomestic bird species
- (g) Culex spp vector
- (3) Dengue
 - (a) Most important arbovirus from a world-wide respective
 - (b) 4 strains
 - (c) Primary human vector Aedes aegypti
 - (d) Tropical distribution
 - (e) Average ~1/2 million cases per year in Latin America
 - (f) Correlated to change in distribution of Aedes aegypti
 - (g) Hawaii outbreak tied to Ae albopictus (2001-2002)
 - (h) Dengue does not appear to become endemic in the absence of *Ae aegypti*
 - (i) Dengue Hemorrhagic Fever related to second infection from another strain
 - (j) Sylvan cycle in wild primates
 - (k) No vaccine
- c) Generalizations
 - i) All zoonotic
 - (1) Only dengue can be maintained or cycled in humans
 - (2) VEE can briefly cycle in horses
 - ii) All cause human disease
 - iii) Symptoms occur within 3-10 days (usually 6-7 days)
 - iv) No human vaccines
 - v) Good surveillance and appropriate mosquito control are essential
- d) External factors affecting transmission
 - i) Weather/climate
 - ii) Vector abundance
 - iii) Abundance of amplifying/reservoir host
 - iv) Presence of predators, parasites, etc
- 3) Insecticide Resistance in North American WNV Vectors Bill Brogdon
 - a) The most practical method for proving the presence of resistance is a good bioassay
 - i) Field
 - ii) Bottle/Lab
 - b) Question
 - i) Will this formulation of this insecticide control this vector at this location at this time?
 - ii) If not, now what?
 - c) Mosquito control based on nuisance mosquitoes
 - d) Need to also look at resistance in vector species
 - e) Resistance surveillance lets you know when something is changing
 - i) Need to recheck resistance after rotating chemicals
 - ii) Resistance reflects chemical use patterns

- f) Resistance is highly focal
 - i) Surveillance needs to be spatial
 - ii) Surveillance needs to be ongoing
- g) Molecular Assays
 - i) Esterase assay resistance enzyme
 - ii) Fluorescence PCR
 - iii) DNA analysis
- h) Bioassay Procedures
 - i) One method
 - (1) Collect egg rafts
 - (2) Rear and ID
 - (3) Bottle Bioassay
 - ii) Adult collections
 - (1) Good for virus testing
 - (2) Don't always know which species
 - iii) Multiplex procedures will give more complete data
 - (1) Not yet practical for Mosquito Control Agencies
 - (2) Not a complete solution for all areas and all types of resistance
- i) Culex spp info
 - i) Species vary from North to South and from East to West
 - ii) Resistance also varies
 - iii) Types of resistance
 - (1) Point mutations (KDR-resistance genes)
 - (a) Different mutations found
 - (b) Regionally specific
 - (c) May be a relict of the *Ae aegypti* eradication program
 - (d) Multiple mutation can be found in one mosquito
 - (e) KDR-resistance to pyrethroids is very wide-spread
 - (f) Misting systems will drive resistance to pyrethroids very rapidly
 - (2) Unregulated (oxidases, GST)
 - (a) Oxidases
 - (i) Lots of polymorphism
 - (ii) Oxidases metabolize at a lot of places on the pyrethroid molecule
 - (iii) Don't know what assortment of resistance enzymes are out there in the mosquito populations
 - (b) GST
 - (i) Involved with DDT resistance
 - (ii) Becoming more wide spread
 - (iii) Very complicated multisplicing
 - (3) Multiple copy (esterase resistance genes)
 - (a) Different genes are conferring resistance in different areas
 - (b) Georgia has esterase resistance in the Culex populations
- j) Bottom line depend on bioassays
 - i) Mechanisms for resistance are in the mosquito populations
 - ii) Need to do resistance surveillance

- iii) No resistance seen in the field to Dibrom yet
 - (1) High vapor pressure chemical
 - (2) Hard for mosquito to get mechanisms in place fast enough
- 4) Industry Spotlight
 - a) B&G
 - i) Sentinel GIS
 - (1) Mobile solution for all surveillance and control needs
 - (2) Tracking, reporting & monitoring all in one package
 - ii) Products
 - (1) Aqualuer -
 - (i) Permithrin/PBO product
 - (ii) Oil-based
 - (2) Provect -
 - (a) Temephos
 - (b) Various formulations
 - (c) Good against all stages of mosquito larvae
 - (d) Good backup pesticide
 - (3) Altosid complete line of products
 - iii) Equipment
 - b) Valent BioSciences
 - i) Products
 - (1) Vectobac Bti
 - (a) Quick acting (withing 24 hrs)
 - (b) No residual
 - (2) VectoLex Bs
 - (a) Slower mode of action (within 48 hrs)
 - (b) Some recycling spores germinate
 - ii) Mode of action
 - (1) Spores and crystals
 - (2) "stomach" poison
 - (3) Activated by specific gut pH
 - (a) Specific to mosquitoes
 - (b) Some midge control
 - iii) Various formulations
 - iv) Underground control
 - (1) Primarily an urban problem
 - (2) Pump system to disperse liquid product via ULV into catch basins
- 5) Georgia Tick Attach Study Laurel Garrison
 - a) Human-biting ticks in Georgia
 - i) Amblyomma americanum (Lone Star tick)
 - ii) Dermacenter variables American dog tick
 - iii) *Ixodes scapularis* Blacklegged tick
 - iv) Amblyomma maculatum
 - b) Tickborne disease burden
 - i) RMSF higher than nationwide incidence
 - ii) HME similar to nationwide average

- iii) Lyme Disease much lower than nationwide average
- c) Study
 - i) One year study (April 2005-April 2006)
 - ii) Patnered with NR, Georgia Poison Center, UGA
 - iii) Characterize, estimate, identify
 - iv) Ticks ID'ed and tested at SCWDS
 - v) GDPH epidemiologist administered a questionnaire
 - (1) Exposure
 - (2) Symptoms
 - vi) Outcome
 - (1) 807 enrollees
 - (2) 57% submitted tick for testing
 - (3) No difference in whether someone submitted a tick or not no selection bias
 - (4) Barriers to joining study
 - (5) Results
 - (a) Peak corresponds to media coverage
 - (b) Demographics
 - (i) 50.6% male
 - (ii) Median age 50
 - (iii) Predominantly non-Hispanic whites
 - (c) Submissions primarily from areas above the Fall line
 - (d) Most ticks were Lone Star ticks
 - (e) Most were adult ticks
 - (f) Disease agents found:
 - (i) Rickettsia amblyommii
 - (ii) Ehrlichia Chaffeensia
 - (iii) Borrelia Ionestari
 - (iv) R montanensis
 - (v) E ewingii
 - (vi) Panola Mountain Ehrlichia
 - (g) Symptoms
 - (i) 18% reported being sick within 3 weeks after being bitten by tick
 - (ii) No correlation with being bit by an infected tick
 - (h) Factors affecting illness
 - (i) Tick testing positive*
 - (ii) Tick engorgement status
 - (iii) Species of tick
 - (iv) Multiple bites
 - (v) Geographic area
 - (vi) Length time attached
 - (vii) Age
 - (viii) Chronic conditions
 - (i) Only the presence of disease agents in the tick correlated to the presence of symptoms

- 6) B&G Sentinel GIS David Sykes
 - a) Electronic Data Solutions
 - b) Software packages
 - i) Tracking
 - ii) Mapping
 - iii) Reporting
 - c) Tracking
 - i) Old school highlighting roads on a paper map
 - ii) A variety of mechanical/electrical monitoring devices developed
 - iii) Computerized devices
 - d) Mapping
 - i) Old school paper maps
 - ii) GIS
 - e) Reporting Need to combine info from a variety of sources
 - f) Sentinel GIS
 - i) Combines all data sources and reporting capability into one package
 - ii) Uses a hand-held computer any Windows mobile device)
 - iii) Can record a wide-variety of tracking data
 - iv) Can input data
 - v) Has GPS capability (1) Navigate (2) Track
 - vi) Highly customizable
 - vii) Based on ESRI GIS
 - viii) Uses ArcPad and Datalink
 - ix) Database functions search capacity
 - x) Report generation wizards
 - xi) Can output to other formats
 - xii)Easy to use
 - g) Software resides on the desktop computer
 - h) Synchronize to transfer data

Third Session

- 1) Operational Midge Control Annji Greenwood
 - a) Lake Monroe
 - i) Surface area ~9000 acres
 - ii) Eutrophic system
 - iii) Chironomids present
 - (1) High density
 - (2) Low diversity
 - iv) Big nuisance problem
 - (1) Odor
 - (2) Staining
 - (3) Clogging vents
 - (4) Economic loss (\$3-4 million)

- v) Midge biology
 - (1) Life cycle similar to mosquitoes
 - (2) Cycle 2-3 weeks in summer
 - (3) Development may be suspended in winter
 - (4) Larvae difficult to see
 - (a) 4 instars
 - (b) 1st instar
 - (i) mostly planktonic
 - (ii) do not always feed
 - (c) 2nd, 3rd, and 4th instars are found within sediment
 - (d) Red in color hemoglobin for low oxygen conditions
 - (e) May form tubes to avoid predation
 - (f) Pupae hard to find
 - (5) Adults
 - (a) Males form swarms
 - (b) Do not feed as adults
 - (c) Eggs laid at dusk or at night
- b) Surveillance
 - i) Use an eckman dredge to sample larvae from the lake floor
 - ii) Sample within predetermined grids
 - iii) Map data
 - iv) Determine acreage of treatable areas
 - v) Treat when larval populations are at treatable levels
 - vi) Lobinske, et al 2002 Spatially Explicit Computer Model for Larval Midge Distribution
 - (1) Seche disk readings
 - (2) Larval density
 - (3) Temp
 - (4) Water depth
 - (5) Outcome likely distribution of larvae
 - (6) Only works on one or two nuisance species
- c) Control
 - i) Chemical
 - (1) Use a spreader to put out larvicide
 - (2) Large area difficult to treat
 - (3) Temephos
- d) Physical River Walk
 - i) Compared NJ Light Traps and sticky traps (panel trap)
 - ii) Sticky traps worked best
 - iii) Using panel traps on light posts to determine midge population
 - iv) Found that the River Walk lights attracted large numbers of midges
 - v) Light-Shield Study
 - (1) Used shields on the lights
 - (2) Shielded lights did not reflect off the lake water
 - (3) 75% mean light intensity reduction achieved
 - (4) 42% reduction in midge attraction after shielding

- vi) Light Barge Study
 - (1) Dr Arsha Ali & Dr Richard Lobinske (1998)
 - (a) Decoy light barges set in lake intercept
 - (b) ~50% of midges before they reach the land
 - (2) Both barge surface and lights attract the midges more with lights on
 - (3) Light barges drawing more midges that shoreline lights
 - (4) Project being continued for another year

vii) Vegetation - effect of presence or absence of midge numbers viii) Sound??

- 2) My Life in Film Roxanne Connelly
 - a) Integrated Management Control for Mosquitoes: The Basics
 - b) Making an educational video
 - i) Funding USDA Southern IPM Regional Grant
 - ii) Points
 - (1) Scientifically correct
 - (2) Explain IPM principles
 - (3) Meet the needs of many basic/beginner audiences
 - (a) Field techs
 - (b) Commissioners
 - (c) County Officials
 - (d) the Public
 - iii) Format
 - (1) Modules?
 - (2) One video?
 - (3) Q&A??
 - iv) Media
 - (1) Cost goes up with the different media
 - (2) DVD
 - (3) Online, eventually
 - c) On Location Issues
 - i) Traffic
 - ii) Extraneous noise
 - (1) People
 - (2) Wind
 - (3) Weather
 - (4) ...
 - iii) Lighting
 - iv) Lack of cooperation by nature
 - v) Time of year
 - vi) Time of day
 - vii)Other issues
 - (1) Permissions
 - (2) Copyrights vs Public domain
 - (3) Brand names
 - (4) Regionality

viii) Need for cooperation from a lot of people

- d) What's on the DVD?
 - i) 10 modules
 - ii) IPM mosquito control
 - iii) Discussion questions
 - iv) CEU opportunity
 - v) Fact sheets
- e) Getting a DVD
 - i) One per agency
 - ii) Free of charge
 - iii) Can make copies
- 3) Industry Spotlight
 - a) Curtis DynaFog
 - i) Bill Phillips no longer with company
 - ii) New person?
 - iii) Products sold through Univar
 - b) Wellmark Central Life
 - i) Altosid
 - (1) Can pre-treat areas
 - (2) Many formulations
 - ii) Mavrik -
 - (1) Perimeter control
 - (2) Does not kill honeybees after it dries
 - (3) Safe to use on plants
 - iii) Literature packets handouts
- 4) The Status of Entomology in Georgia Ray Noblet
 - a) Land Grant University
 - b) UGA Entomology Department
 - i) Staff
 - (1) 30 tenure track
 - (2) 10 research
 - (3) 20 support staff
 - ii) Role
 - (1) Extension & outreach
 - (2) Teaching
 - (3) Basic & applied research
 - iii) Focal areas
 - (1) Urban Entomology
 - (2) Insect Pathogen Interactions/Vector Biology
 - (3) Insect Pest Management
 - (4) Molecular Biology/Biotechnology
 - (5) Ecology & Environmental Entomology
 - iv) Current Issues
 - (1) Budget cuts
 - (2) Added back a cotton IPM faculty member 2006
 - (3) Continued funding for Formosan termite work

- (4) Plant Vector Biology position being added
- (5) Looking for funding for vector biology for medically important diseases
- v) UGA's Entomology Dept & GMCA
 - (1) Need local ambassadors for entomology and mosquito control
 - (2) Work together to meet training needs
 - (3) Help support local education programs
 - (4) Interns
- c) Problems
 - i) Insect control and damage costs in GA ~\$1 billion per year
 - ii) However, almost all insects are beneficial
- d) Need to work together education the public about insects and to control detrimental insects
- 5) Arboviral Surveillance in Alabama Gary Mullen
 - a) Helpful to see what is happening in surrounding states
 - b) Historical notes
 - i) Not prepared to conduct surveillance
 - ii) 1959-1963
 - (1) Surveillance done by CDC in southern Alabama
 - (2) Discovered a number of viruses in Alabama
 - iii) Some surveillance/testing done through Mobile Health Dept
 - c) State Health Department
 - i) Coordinating agency
 - ii) Oversee 67 county agencies
 - iii) Handled through Epidemiology Division
 - iv) No medical entomologist at state level
 - v) Depend on Auburn University for entomological expertise
 - d) WNV 2000
 - i) Pulled together a number of agencies (~20)
 - (1) TVA
 - (2) State Conservation
 - (3) DNR
 - (4) Raptor Rehab Center
 - (5) Auburn University
 - (6) Dept of Ag
 - (7) ...
 - ii) Initially coordinated by State Public Health entomologist
 - iii) 2006 State Dept of Health hired an entomologist
 - iv) 3 counties involved with mosquito surveillance
 - (1) Jefferson
 - (2) Baldwin
 - (3) Mobile
 - v) All counties involved with bird surveillance
 - vi) Most surveillance done through Auburn University
 - vii) Testing done at Vet Diagnostic Lab at Auburn
 - e) Current surveillance

- i) Primary vector is probably Cx quinquefasciatus
 - (1) Initially used light traps
 - (2) 2004 shifted to gravid traps
- ii) Detected first cases in 2001
 - (1) Very few cases late in year
 - (2) No positive mosquito pools
 - (3) No positive dead birds
 - (4) Good baseline data
 - (5) EEE epidemic in horses
- iii) 2002
 - (1) Dead bird data ~52% positive
 - (2) Continued collecting mosquitoes
 - (3) 194 horse cases
- iv) 2003
 - (1) About 6% pools tested WNV+
 - (2) Dead bird collecting and testing decreasing
 - (3) 66 horse cases
 - (4) EEE epidemic in horses
 - (5) Zoo mosquito collections done
 - (a) July MIR >12%
 - (b) August MIR ~11%
 - (c) Dropped to ~6%
 - (d) Late season <1%
- v) Subsequently
 - (1) Number positive dead birds decreasing dramatically
 - (2) Number of positive pools also decreasing
 - (3) Very few horse cases reported
- vi) Some SLE seen
- vii)Seeing dengue cases, all internationally acquired
- viii) 2007
 - (1) No horse cases
 - (2) 15 human cases
 - (a) 11 from Montgomery
 - (b) Rest scattered throughout state
 - (3) Bird and mosquito data pending
- f) What about the future
 - i) Funding issues
 - ii) Auburn University will probably not be involved in surveillance for much longer
 - iii) Entomologist at State Health Dept change in State program??
- g) Make use of baseline and historic data
- 6) Dynamics of Arbovirus Transmission Cynthia Lord
 - a) What are the dynamics?
 - i) Changes in time and space
 - ii) Can be monitored/modeled at different scales
 - (1) Single season

- (2) Between years
- iii) Scale used depends on questions asked
- b) Viruses
 - i) SLE
 - (1) Vector *Cx nigripalpus*
 - (2) Bird-mosquito cycle
 - ii) WNV
 - (1) Vector various Culex spp
 - (2) Bird-mosquito cycle
- c) MODEL: Understanding central bird-mosquito cycle
 - i) Model development
 - (1) Question Can seasonality and variation in mosquito population explain all the variability in SLE transmission dynamics? NO
 - (2) Question How does seasonality in bird populations interact with mosquito variation to affect transmission?
 - ii) Structure & Assumptions
 - (1) Seasonal dynamics
 - (a) Birds and mosquitoes
 - (b) Temperature effects
 - (2) Keeping it simple Assumptions
 - (a) Consider one species of mosquito
 - (i) Populations described based on field data
 - (ii) Variation in seasonal patterns
 - (b) Consider one host species
 - (i) 2 age classes
 - (ii) Seasonal reproduction
 - (3) Create a flow chart for the model
 - (a) Recruitment
 - (b) Mortality
 - (c) Susceptibility
 - (d) Infectivity
 - (4) Need to incorporate variability
 - (a) Biological
 - (i) Spatial
 - (ii) Temporal
 - (iii) Species
 - (b) Gaps in knowledge
 - (5) Analysis
 - (a) Sensitivity analysis
 - (i) Explores parameter space
 - (ii) Assess consequence of variability
 - (b) Analysis
 - (i) Outcome
 - (ii) Statistical analysis contribution of each parameter to outcome
- d) How did the model work?

- i) Virus introduced when there are a lot of mosquitoes immediate outbreak
- ii) Virus introduced when mosquito populations were low low levels of transmission until mosquito populations increased, then an outbreak occurred
- iii) Logistic Model $R^2 = 0.34$
- iv) Likelihood of epidemic
 - (1) Timing of peak bird recruitment
 - (2) Time of summer peak in mosquitoes
 - (3) Threshold effect mosquito population size below which an epidemic does not occur
- e) What about WNV multiple vector species
 - i) Tradeoffs in population abundance, vector competence, seasonality
 - ii) Will a less competent vector allow transmission during the "off" season
 - iii) Work in progress
- f) Using the model control based on vector abundance
- 7) Product Development Made Simple Peter Connelly
 - a) Bayer Environmental Science
 - b) Development process is lengthy and costly
 - c) Mosquito control products
 - i) 2 classes (1) Pyrethroids (2) OPs
 - ii) About 7 active ingrediaents
 - d) Newsletter What's Buzzing
 - e) <u>www.bayerus.com</u>
 - f) Development times
 - i) 1995 8.3 years
 - ii) 2000 9.1 years
 - iii) 2005 10 years
 - g) Number of compounds considered to get one marketable compound is over 1 million in 2007
 - h) Procedure
 - i) Random chemistry
 - (1) Consider what is needed
 - (2) Screen known chemicals for activity
 - ii) Directed screening closer look at chemicals with desired activity
 - i) Costs
 - i) 1975-1980: \$23.1 million
 - ii) 1990-1995: \$157 million
 - iii) 2000: \$200 million
 - iv) 2004: \$240 million
 - j) Most products developed for control of crop pests
 - k) Crop needs directly opposite to mosquito control needs
 - I) Patent lengths have decreased less chance to make a profit

- m) Only about 6 companies still doing research and development for pesticides
- n) Industry sponsorship ensures survival of research programs
- 8) AMCA SE Region Update Roxanne Connelly
 - a) AMCA founded in 1935
 - b) 2006 >1600 members
 - c) Goals
 - i) Support good science
 - ii) Partner with EPA
 - iii) Promote IPM
 - iv) Education and information
 - d) <u>www.mosquito.org</u>
 - e) Committees
 - i) Training & Education committee Elmer Gray (member)
 - ii) Many others
 - iii) Volunteer positions
 - f) Legislative & Regulatory Affairs Washington Days
 - g) NPS Mosquito Control Policies
 - i) <u>www.fws.gov/refuges/policyMakers/NWRpolicies.html</u>
 - ii) Commenting period
 - h) Annual Meeting

Fourth Session

- 1) South Carolina Arboviral Activity Chris Evans
 - a) DHEC entomologist
 - b) Surveillance
 - i) Birds
 - (1) All counties required to collect and ship dead birds
 - (2) March 15-Nov 30
 - (3) Also except birds from other sources
 - (4) Testing
 - (a) Corvids oral & cloacal swabs
 - (b) Others brain
 - (5) Bird samples decreasing
 - (a) 2006 129 birds
 - (6) 2007 50 birds
 - ii) Horses
 - (1) Useful sentinels I rural areas
 - (2) Horses tested at Clemson University
 - (3) Data collected by Clemson or entomologist
 - (4) 2007 tested 18 horses, 2 dogs
 - iii) Mosquitoes
 - (1) Provides earliest evidence of transmission
 - (2) Programs
 - (a) 4 city

- (b) 3 county
- (c) 1 lake impoundment
- (3) Traps
 - (a) Reiter gravid trap wheat straw infusion
 - (b) CDC light
- (4) Overwinter collections done
- (5) Traps set all over the state
 - (a) 68 sites
 - (b) 26 sites
- (6) Entomologist does all data collection, ID's and pooling
- (7) Testing
 - (a) Viral culturing
 - (b) r-PCR
- (8) Species of interest
 - (a) Oc japonicus
 - (b) Ae aegypti
- iv) Humans
 - (1) Useful for resource allocation
 - (2) Useful for tailoring educational messages
 - (3) Testing
 - (a) ELISA
 - (b) Some PCR
 - (4) Procedure
 - (a) Physician notifies Health Department
 - (b) Case investigation by regional epidemiologists
 - (c) Notify environmental health trapping
 - (d) Notify Mosquito Control control
 - (e) Education
- c) Results
 - i) 2006
 - (1) Birds 15
 - (2) Equines 0
 - (3) Human 1 WNV, 1 LAC
 - (4) Mosquito 35 pools
 - ii) 2007
 - (1) Birds 4
 - (2) Equines 1
 - (3) Human 4 cases
 - (4) Mosquito 46 pools
 - iii) 19 cases total since 2002
- d) Mapping
 - i) Mosquito pie charts at trap sites
 - ii) Black Neg, Red Pos
- e) Bird and mosquito positives are linked
- f) Aug and Sept highest months of WNV activity
- g) Human cases do occur in cooler weather

- h) EEE also a concern
 - i) Monitor Cx erraticus and Cs melanura
 - ii) 2003 was a big year
 - iii) Had a EEE+ dog in 2003
- 2) Industry Spotlight
 - a) Clarke Mosquito Control
 - i) 5 new products in 2007
 - (1) AquaAnvil
 - (a) Water-based Anvil
 - (b) Macroemulsion
 - (c) Evaporation provides good particle size
 - (2) AquaHalt
 - (3) Duet oil based dual active adulticide
 - (a) ETOC (prallethrin) + Anvil (sumithrin)
 - (b) Benign agitation -
 - (i) Moves resting mosquitoes out of harborage
 - (ii) Does not cause a biting frenzy
 - (4) VCMS data management
 - (a) Acquired by Clarke in 2006
 - (b) Single solution data management system
 - (c) Collects data
 - (d) Creates maps and reports
 - (5) FlightMaster aerial application flight line
 - ii) Investing >\$1 million to Research and Development of mosquito control products
 - b) Pest Management Resources
 - i) Larry Motes
 - ii) Based in Charleston, SC
 - iii) Contract mosquito control
 - iv) Consulting work for startup programs
- 3) Using Motorized Scooters in Chatham County Bobby Moulis
 - a) Need to treat storm drains
 - b) Hot zone
 - i) 203 23.5 mi² hot zone
 - ii) Began to treat storm drains
 - iii) 8500 storm drains in area
 - iv) First method
 - (1) Altosid ingots
 - (2) 150 day product
 - (3) Hand treatment
 - v) 2004 second method
 - (1) 80% truck treatment using mozzies
 - (2) 20% by hand
 - vi) Ideas
 - (1) Bicycles???
 - (2) Scooters??

- (3) Motorized scooters!!
- vii) 2005 third method
 - (1) Motorized scooters
 - (2) 10 hours of training
 - (3) Practiced with rentals
 - (4) No license needed
 - (5) Altosid pellets pipe and funnel system
 - (6) Could treat between 100-150 storm drains per day
 - (7) Worked in teams one on each side of the road
 - (8) Switched to Altosid WSP 300 to 350 strom drains per day
- viii) 2006 product switching
 - (1) BS WSP
 - (2) Altosid WSP
- ix) Problems
 - (1) Tracking working on this
 - (2) Accidents only one
 - (3) Traffic
 - (a) Lights on scooters
 - (b) Work in low traffic times
 - (4) Transport -
 - (a) Trailer with modifications
 - (b) Used in outreach programs
 - (c) Supply depot
- x) 2007 extension of hot zone
- c) Scooters allow a 30-day cycle of treatments
 - i) Able to re-treat to avoid product flushing problems
 - ii) Minimizes ground adulticiding
 - iii) Allows for easy extension of area without impacting treatment schedule
 - iv) Much cheaper to larvicide catch basins with scooters than with trucks
- 4) Mosquito Parasites Mark Blackmore
 - a) Form of symbiosis
 - i) Parasites host not killed
 - ii) Parasitoids Host dies
 - b) Types of parasitism
 - i) Endo- internal
 - ii) Ecto- external
 - iii) Obligate must have
 - iv) Facultative opportunistic
 - v) How many hosts
 - (1) Monoxenous one
 - (2) Oligoxenous few
 - (3) Polyxenous many
 - c) Mosquito parasites (excluding viruses)
 - i) Bacteria
 - (1) Wolbachia pipientis

- (2) Intercellular
- (3) Pass in the female line
- (4) Infect male gonads renders them sterile
- (5) Effects
 - (a) Cytoplasmic incompatibility
 - (b) Filarid nematode pathogegenicity
- (6) Shortens mosquito life expectancy
- (7) http://microbewiki.kenyon.edu/index.php/Wolbachia_pipientis
- ii) Protozoans
 - (1) Apicomplexa
 - (a) Plasmodia spp cause malaria
 - (i) Obligate endoparasites
 - (ii) Very host specific
 - (iii) GA malaria vectors An quadrimaculatus sl & An punctipennis
 - (b) Ascogregarina spp
 - (i) Gregarines
 - (ii) One host species
 - (iii) <u>http://www.zoology.ubc.ca/courses/bio332/sporozoa_not</u> <u>es.htm</u>
 - (iv) Host specific
 - (2) Effect on host gregarines
 - (a) Minimal in usual host
 - (b) May be pathogenic in aberrant hosts
 - (i) Slow growth
 - (ii) Mortality
 - (iii) Increased susceptibility to pesticides
 - (c) Aedes aegypti vs Aedes albopictus
 - (i) Parasite prevalence high
 - 1. 70 % sites infected
 - 2. >50% larvae with parasites
 - (ii) A mechanism by which albos out-compete aegypti?? Probably not.
- iii) Metazoans
 - (1) Nematodes
 - (a) Mermithids
 - (i) Mosquito parasitoids
 - (ii) <u>http://nematode.unl.edu/epn/mermit3a.htm</u>
 - (iii) Life cycle
 - 1. Enter larval instar
 - 2. Some species emerge from larvae, some from adults
 - (iv) Behavioral manipulations occur
 - (v) Mosquitoes can have an immune response to the nematodes
 - 1. Encapsulate nematode
 - 2. Response modified by
 - 3. Interspecies variation

- 4. Parasite load
- 5. Efficacy
- (vi) Was marketed as a mosquito control agent Skeeter Doom
 - 1. Time consuming to produce
 - 2. Not cost effective
- (vii) Nematode has environmental sex determination
- (viii) Adults are free-living
- (b) Filarial worms
 - (i) Canine heartworm Dirofilaria immitis
 - 1. Obligate parasite
 - 2. Very common in Georgia
 - 3. Host specificity issues
 - 4. Life cycle
 - a. 3 larval stages in mosquito
 - b. 3 larval stages and adult stage in dog
 - (ii) Human filarial diseases
- (2) Mites
 - (a) Arrenurid mites
 - (b) Ectoparasites
 - (c) Common on *Cq perturbans* and *Anopheles* spp
 - (d) Red and green mites found
 - (e) Drop off when females goes to lay eggs
- (3) Pseudoscorpions
 - (a) Found attached to mosquitoes
 - (b) Phoresy (hitching a ride) or parasitism (actually feeding)??
 - (c) <u>http://www.uoguelph.ca/pdc/Factsheets/Other/Pseudoscorpi</u> ans.htm
- 5) GIS Mosquito Surveillance and Control Rachel Strom
 - a) South Georgia Regional Development Center
 - b) Services
 - i) Planning
 - ii) Small business loans
 - iii) Workforce investment
 - iv) IT
 - v) Data processing
 - vi) GIS
 - c) VALOR Valdosta-Lowndes Regional GIS initiative
 - i) 4 fulltime GIS professionals
 - ii) ESRI products
 - iii) Networked to City and County governments
 - iv) Instant data access
 - d) GIS smart maps
 - e) Partnership arose between VSU's mosquito program and the VALOR program
 - f) Process
 - i) Where are the traps?

- ii) How much of the city/county is covered?
 - (1) Added more traps for better coverage
 - (a) Population-based
 - (b) Needed access to sites
 - (2) Goal
 - (a) City Monitor vector populations
 - (b) County Data for control
 - (3) Issues Valdosta
 - (a) How much area in city is actually monitored
 - (b) Based on vector species
 - (c) Used a 1 mile radius buffer
 - (d) What other info is needed
 - (i) Mapped all schools
 - (ii) Mapped Childcare Centers
 - (iii) Mapped personal care homes
 - (4) Using the data
 - (a) Weekly trap totals in graph form
 - (i) quinces
 - (ii) melanura
 - (b) Keeping historic database
 - (5) Mapping project has evolved to include complaints
- iii) Control issues county
 - (1) Focus on Cs melanura
 - (2) Used wetlands and tree data layers to create melanura habitat maps
 - (3) Added population data
 - (4) Added historic data
 - (5) Added schools, childcare centers, and personal care homes
 - (6) Came up with risk maps
 - (7) Used maps to target larviciding
- iv) What's next
 - (1) Expand monitoring to all types of mosquitoes
 - (2) Switch to concentration on nuisance species
 - (3) Wish to expand surveillance
 - (4) Add retention/detention pond data
- v) ArcReader documents

Business Meeting

- 1) 2008 meeting: Oct 17-19???
- 2) 2009 meeting: Oct 15-17???
- 3) 2010 meeting: 3rd week
- 4) New Officers
 - a) President: Wallace Head
 - b) Vice President: Mark Blackmore
 - c) Secretary/Treasurer: Robert Seamans

- d) Reps
 - i) 1 Year: Candace Royals
 - ii) 2 Year: Bobby Moulis
 - iii) 3 Year: Robin English
- e) Industry Rep: David Sykes
- f) Education/Cooperative Extension Rep: Elmer Gray
- g) Public Health Rep: Rosmarie Kelly
- 5) Meeting Stats
 - a) Registered 80 people
 - b) 3 were no shows
 - c) Had 3 walk-ins
 - d) 76 people at banquet
 - e) Only 3 registered members not present