Georgia Mosquito Control Association 15-17 Oct 208

15 Oct: First Session

- 1) *Culex coronator* in Coastal GA and South Carolina Bobby Moulis
 - a) Adults being found in many different habitats
 - i) Usually in CDC light traps
 - ii) Twice in gravid traps
 - b) Larvae rarely found
 - i) Occasionally found in brackish water habitat
 - ii) Found in a variety of habitats
 - c) Evidence in literature of human biting
 - d) Not a lot known
- 2) A Day in the Life of a Director Henry Lewandowski
 - a) Important Functions
 - i) External Liaison
 - (1) Board of Commissioners
 - (2) Emergency Issues
 - (3) Citizen concerns
 - (4) Health Dept
 - ii) Develop Staff
 - (1) Listen
 - (2) Discuss plans, results, problems
 - (3) Small errors are great learning tools
 - (4) Learn to let go
 - (5) Bring solutions, not problems
 - (6) Work to eliminate fear
 - (7) Staff should ask questions
 - iii) Develop and control budget
 - iv) Set performance standards
 - (1) Hire
 - (2) Fix or fire
 - (3) Become indispensible both within and without your organization
 - (4) Need protocols and policies, but not too many
 - (5) Be careful what you allow
 - (6) Spray protocols need vs demand
 - (a) Adjusted according to need
 - (b) Varies for nuisance vs vector species
 - (7) Don't get complacent
 - (a) Correspondence, content, appearance
 - (b) Presentations
 - (c) Don't give residents the run around
 - v) Lead by example
 - vi) Develop mission/operational goals

- (1) Short-term
- (2) Long-term
- vii)You are part of the community
 - (1) Attend public functions/events
 - (2) Student internships
 - (3) SCAD Film Documentary
- 3) INDUSTRY SPOTLIGHT
 - a) Peter Connelly AMVAC Environmental Products
 - i) Dibrom (Naled)/Trumpet
 - (1) Labeled for application over water
 - (2) Wide area application
 - (3) Use in closed system
 - (4) Fixed wing and rotary aircraft application
 - ii) AMVAC Product labels http://amvac-chemical.com/labels.htm
 - iii) Nuvan Prostrips
 - (1) Control in storm drains?
 - (2) Enclosed area control
 - (3) Available from ADAPCO and UNIVAR
 - b) Joe Andrews UNIVAR USA
- 4) Pesticide Safety Mark Vallier
 - a) Training, training, training
 - i) Get licensed
 - ii) Site specific info important
 - iii) Use outside consultants for training
 - iv) Lunch & Learn sessions
 - v) Hazmat training
 - vi) Power tool safety
 - vii)Other
 - b) Documentation
 - i) PPE requirements
 - ii) Respiratory protection program
 - iii) Exposure notification forms
 - iv) Voluntary respiratory equipment areas
 - c) Emergency Action Plan
 - i) Fire/injury/evacuation
 - ii) Chemical spill
 - iii) POC
 - iv) Hurricane response
 - v) Critical workforce
 - d) Facility footprint
 - i) Color-coded
 - ii) Useful for fire dept responders
 - e) Security
 - f) Pesticide storage facility
 - i) Placards
 - ii) Eye wash station

- iii) Sumps/sump pumps/storage tank
- iv) Sprinkler system
- v) Strobe lights to indicate pesticide being mixed
- g) Everyday safety
 - i) Spill kits throughout facility
 - ii) Truck beds are locked with bed shields
 - iii) Everything labeled
 - iv) Everything kept clean
- h) Handling pesticide
 - i) Proper PPE for job
 - ii) Radios
 - iii) ID
- i) Vehicles
 - i) Numbered
 - ii) Visible colors
 - iii) Strobe lights
- j) SAFETY FIRST
 - i) Right equipment
 - ii) Right info
- 5) Mosquitoes, CSOs, and Stable Isotopes Melanie Pawlish
 - a) CSO
 - i) Combined sewer overflow system
 - ii) Stormwater, sewage, industrial waste
 - (1) Normal conditions water goes to treatment center
 - (2) Some rain
 - (a) Divert water to CSS system
 - (b) Primary treatment
 - (c) Released to stream
 - (3) Lots of rain untreated water goes right into stream
 - b) Tanyard Creek Facility
 - i) Smallest volume capacity
 - ii) 1955 acres of urban area served
 - iii) <1/10" rain will cause facility to overflow
 - iv) Why is this bad
 - (1) Inorganics
 - (a) Oils
 - (b) Metals
 - (c) Grease
 - (2) Excess nitrogen
 - (3) Increased organic content
 - v) Why have a CSS/CSO system prevents sewer from backing up into houses during rain events
 - c) WNV
 - i) Cx quinquefasciatus and Cx restuans breed in CSO streams
 - ii) WNV+ pools appear to be clustered in areas with CSO streams
 - iii) Human cases also seem to cluster in these areas

- d) What is an isotope?
 - i) Atoms of the same element have varying numbers of neutrons
 - ii) Isotopic signatures ratio of isotopes in an element
 - iii) Stable isotopes not radioactive
- e) What is being used?
 - i) Carbon
 - $(1) C_{12}^{12}$
 - (2) C¹³
 - ii) Nitrogen
 - $(1) N_{15}^{14}$
 - (2) N¹⁵
- f) Use mass spectrometry to determine % of different isotopes in CSO and non-CSO water
- g) Studies
 - i) Mosquito larvae
 - (1) Is there a difference between CSO and non-CSO
 - (2) Spatial variation
 - ii) Adult mosquitoes
 - (1) Gravid & CDC traps
 - (2) Dispersal
 - (3) WNV+ vs WNV- mosquitoes
 - iii) Temporal variations larvae and adults sampled over the season
 - iv) Age variations
 - (1) Blood meal x2
 - (2) Oviposition x2
 - v) Conclusions
 - (1) We know CSOs yield high populations of immatures do they disperse as adults?
 - (2) WNV+ cluster around CSOs is this because of the CSO?
- 6) Delusory Parasitosis Roxanne Connelly
 - a) Normal healthy respect for insects
 - b) Entomophobia irrational fear
 - i) Anxiety/panic attacks
 - ii) Real insects present
 - c) Delusory Parasitosis
 - i) Unshakeable belief
 - ii) No insects involved/present
 - iii) Symptoms, Waldron (1962)
 - (1) Bugs change color
 - (2) Bugs infest hair/skin
 - (3) Bugs jump
 - (4) Bugs follow sufferer
 - iv) Symptoms, Hinkle (2000)
 - (1) Waxy balls
 - (2) Fibers
 - v) The sequence

- (1) PCO treats house
- (2) Person applies pesticides to body
- (3) They see a dermatologist
- (4) They call an entomologist
- (5) This usually occurs multiple times
- (6) Web browsing adds to the problem
- vi) Typical scenarios
 - (1) Samples brought in no insects found
 - (2) Person has sores from scratching
 - (3) They want you to visit their home
 - (4) They insist this is a new insect
 - (5) Many professionals are consulted
 - (6) There is a real problem, it just isn't the one described by the person
 - (7) The whole family and friends can buy into the problem
- vii)Lots of time and effort usually involved
- viii) Final status of cases is usually unknown person can not accept any answer but what they "know" is the problem
- ix) Commonalities
 - (1) Research problem
 - (2) Lots of insects can't catch them
 - (3) Defensive
- x) What is the cause?
 - (1) Prescription, OTC, or recreational drugs
 - (2) Allergies
 - (3) Psychological issues (OCD?)
- xi) Role of the entomologist
 - (1) Find out if there is a real insect
 - (2) Need a protocol
 - (3) Use a form to collect info (Hinkle, 2000)
 - (4) Remind person an entomologist is not a physician
- xii)References
 - (1) <u>http://edis.ifas.ufl.edu</u>
 - (2) http://www.ent.uga.edu/pubs/delusory.pdf
 - (3) GER http://health.state.ga.us/pdfs/epi/gers/ger1204.pdf
- 7) Barrier Treatment Study Trey English
 - a) Goal prevent insects from entering an area
 - i) Localized
 - ii) Reduce adult populations
 - b) Benefits
 - i) Timeliness
 - ii) Reduced cost
 - iii) Reduced pesticide use
 - c) Type of applicators
 - i) ULV
 - ii) Electrostatic
 - d) Measurements

- i) Penetration
- ii) Deposition on underside of leaf
- e) Study set-up
 - i) Pesticide used: Talstar
 - ii) AR 21.8 ml/300m
 - iii) Droplet cards/dye readers
 - iv) Hotwire droplet sizing
- f) Collecting data
 - i) Leaf washer
 - ii) Droplet cards
- g) Results
 - i) Droplet size range: 13-97 μ
 - ii) Mean deposition
 - iii) Penetration
- h) Conclusions
 - i) Larger droplets better
 - ii) High air velocity better
 - iii) Electrostatic sprayers do not improve barrier spray efficacy
 - iv) No difference in backpack or truck mounted

16 Oct:

Second Session

- 1) Challenges of a New Director Ben Brewer
 - a) Problems
 - i) Little support from other divisions
 - (1) Common question so when are you going to quit
 - (2) Took months to get a computer
 - (3) Hard to deal with personnel issues
 - ii) Lack of experience
 - iii) Altamaha Canal
 - iv) Finances
 - v) Human resources
 - b) Issues that arose
 - i) Altamaha Canal
 - (1) Very large
 - (2) Naturalized wetlands
 - ii) Fuel shortages biofuel
 - iii) Tornado
 - iv) Hurricane
 - v) Open Marsh Water Management (OMWM)
 - (1) Large amount of paperwork
 - (2) Issues with Army Corp
 - (3) Political issues
 - (4) Old ditches
 - c) The usual issues

- i) Andrews Island dredge areas
- ii) Saltmarsh mosquitoes
- iii) Politics
- iv) Ditching issues
- d) Community issues
 - i) Dames of the Revolutionary War
 - ii) DNR birds
 - iii) Island Authority
 - iv) Rich folks/vacationers
 - v) Commissioners
- e) Biggest problem
 - i) Lack of time
 - ii) Too many projects
 - iii) Bad feelings between agencies
- f) Control issues can be hard to resolve
 - i) Larvicide goal is to do mostly this
 - ii) Adulticide this is also needed at times
 - iii) OMWM needs to be done
 - iv) Problem
 - (1) Some people don't want anything done
 - (2) Some people want the mosquitoes gone
 - (3) Legal/regulatory issues
- g) Media
 - i) So far so good
 - ii) Working to get positive publicity
 - iii) Front page color
 - iv) Some reporting issues, but they have been minor
- 2) Georgia Extension Services Dr Steve Brown
 - a) UGA Land Grant University
 - i) Made university education available to all
 - ii) Missions
 - (1) Teaching
 - (2) Research
 - (3) Extension
 - b) Extension
 - i) Outreach to community
 - ii) Extends learning to whole state
 - iii) College of Agriculture and Environmental Science
 - iv) County extension agents
 - (1) Part of university system
 - (2) Offices in 157 of 159 counties
 - (3) About 350 county agents throughout state
 - (4) Extensive training programs
 - (5) Funding varies from county to county
 - c) College of Ag/Environ Sci
 - i) Budget issues

- ii) Research programs
 - (1) #1 within University
 - (2) #4 in whole US
- iii) Cooperative extension services
 - (1) Funding from a variety of sources
 - (2) Bring together many agencies
- iv) Extension Program
 - (1) County agents
 - (2) Specialists
- v) 4-H program
- vi) Teaching program
 - (1) Tends to be a small program
 - (2) Don't have as many students as other programs
 - (3) Shortage of good Ag people
 - (4) Working to increase enrollment -
 - (a) Succeeding
 - (b) Seeing more female students
- vii)2007 ranked #1 in university for fund raising
- d) State funding issue
 - i) College will lose money
 - ii) Determined to overcome problem
- e) Identity problem
 - i) Working on more visibility
 - ii) Banner programs
 - (1) Walk Georgia <u>http://www.walkgeorgia.org/</u>
 - (2) Water Smart -<u>http://www.hort.uga.edu/extension/mastergardener/WaterSmartD</u> esignforGoldStar.html
 - iii) Challenges
 - (1) Utility costs
 - (2) Difficult to find qualified people
 - (3) Retirement getting set to lose as much as 50% of current work force
- f) Looking to partner with mosquito control
 - i) Can get info out quickly
 - ii) Trained in crisis situations
 - iii) Contact Elmer Gray
- 3) NEWS Mosquito Control Training Manual is available!!!
- 4) All the News That's Fit to Misrepresent Joe Conlon
 - a) AN ASIDE: Hurricane Ike Assistance, Relief Fund Texas Mosquito Control Association, Box 906, Hewitt, TX 76643
 - b) Public Relations and Information
 - i) Email/telephone
 - ii) Radio and print
 - iii) Satellite TV interviews
 - iv) Morning Show with Mike & Juliet (repellents)
 - v) The Today Show with Matt Lauer (repellents)

- vi) >150 million media impressions
- c) EU Directive 91/414
 - i) Regulates plant chemicals
 - ii) Amendments from a risk-based registration (possibilities of harm) to a hazard-based registration (probabilities of harm)
 (1) If it is possible, no matter how unlikely, it is now a problem
 - (2) Stricter measures
 - iii) Global harmonization of labels(1) Labels designed to evoke an emotional response(2) Only use DANGER and WARNING
 - iv) World Health Assembly Resolution 50.13
 - v) WHO had no IPM policy until early 2000s
 - (1) They are totally clueless about research on IPM
 - (2) Their idea of IPM is no pesticide use
 - (3) One problem grant program is trying to self-perpetuate
 - (4) Will this spill over to the US? Possibly
- d) Altman vs Amherst NY case
 - i) Amherst prevails
 - ii) ULV spray does not need a Clean Water Act permit
 - iii) Rule being reconsidered by the 6th Circuit Court
 - iv) Environmentalists want mosquito control to be permitted to do ULV spraying
 - v) Crop producers want all spraying to be non-permitted
- e) Endangered Species proposed rule
 - i) Lots of litigation occurring
 - ii) Huge legal log jam
 - iii) Will prevent use of pesticides in areas until log jam is cleared
 - iv) 15 August 2008 Interagency Cooperation proposed rule
 - (1) Reduces impact of ESA regulations/litigations
 - (2) Amends definitions
 - (a) "Biological assessment"
 - (b) "Cumulative effects"
 - (c) Expanded "No Effects"
 - (d) "Effects of the Action"
 - (e) "Reasonably certain" (hazard-based) vs "reasonably foreseeable" (risk-based)
 - (3) Essentially tightens up these definitions to make them more specific and less broad-based
 - (4) Makes definitions less speculative and more specific
 - (5) Also allows other agencies to just review assessments done by other agencies rather than redo them
 - (6) Proposed rule shifts effects determinations to other agencies with resources
 - (7) 60 day timeline automatic assumption of no effect
 - (8) Biological Opinions often come down to possibilities vs probabilities (a) Often based on old information
 - (b) Often based on misuses

- (c) Often based on unrealistic assumptions
- v) Presidential election may change all of this
- f) USFWS Mosquito Control Policy
 - i) May not come out until after election
 - ii) In the meantime, status quo
 - iii) Local health authorities will determine if there is a problem needing control
 - iv) FIFRA Definition
 - (1) Mosquitoes are a health issue
 - (2) Doesn't necessarily over-ride NEPA on refuges
 - v) Current policy: Spray Threshold Criteria = numbers + pathogen presence
 - vi) Choice of chemicals
 - (1) Non-target impacts: USFWS
 - (2) Efficacy: AMCA
 - (3) New policy states no adverse economic effects not true
 - vii)USFWS policy is very reactive, not proactive
- 5) Industry Spotlight
 - a) Valent BioSciences Candace Royals
 - i) Some new products
 - (1) New product works in heavily organic areas and saltmarsh
 - (2) New product for midge control
 - ii) Now selling dippers
 - b) Southern Helicopter Leasing Cliff McGowan
 - i) Started Nov 2007
 - ii) On-call helicopter mosquito control service
 - (1) Inspection
 - (2) Larviciding
 - (3) Adulticiding
 - iii) Require no contracts
 - iv) Focus is on small counties
 - v) Work with county to do what is needed
 - vi) Licensed in GA, FL, SC, LA, AL
 - vii)Working on TX and NC
 - viii) Total mobile
 - (1) Self sufficient
 - (2) Trailers / support staff
- 6) Larval Equipment Calibration Candace Royals
 - a) Why calibrate
 - i) Essential to ensure correct application rates
 - ii) Saves material and money
 - iii) Assures compliance with label and law
 - b) Equipment calibration
 - i) Every piece of equipment is different
 - ii) Every applicator is different
 - iii) Habitat needs vary
 - iv) Calibrating just once does not do the trick
 - c) Factors

- i) Speed of travel
- ii) Swath width
- iii) Flow rate
- iv) Dilution rate
 - (1) Granular constant
 - (2) Liquid
- d) Calibration formulas
 - i) Flow rate = (application rate x speed x swath width)/495
 - ii) Another
- e) Measuring the swath width
 - i) Nice to have an open area
 - ii) Visual monitoring granules
 - (1) Can put out white rags 5' apart for 30"
 - (2) Can see how many granules are put out per square foot
 - iii) Visual calibrations liquid
 - (1) Use dye cards
 - (2) Same procedure
- f) Measuring flow rate
 - i) Liquid
 - (1) Graduated cylinder
 - (2) Stop watch
 - ii) Granular
 - (1) Catch and weigh
 - (2) Spray and weigh
- g) Need to standardize
 - i) Repeat calibration throughout season
 - ii) Calibration should be done by individual applicators
- 7) Ground ULV and Equipment Calibrations David Sykes
 - a) History
 - i) Thermal fogging
 - (1) WWII technology (smoke screen generators)
 - (2) Mixing insecticides into carrying agent (diesel or kerosene) will control insects
 - (3) Good control in heavy vegetation
 - (4) Creates traffic hazards
 - (5) Environmental considerations oil
 - (6) 1946 Todd Shipyard made first thermal fogger
 - (7) Can see and direct fog
 - (8) Used about 40 gal per hour
 - (9) Handheld sprayers developed in the 1960s
 - ii) ULV
 - (1) Developed in 1966
 - (a) Nozzle developed in a joint project between Navy and Dept of Ag (b) Became the LECO nozzle
 - (2) Gary Mount presented papers about ULV in the 1970s
 - (3) Comparable efficacy with thermal fogging

- (4) Used about 1-4 gal per hour
- b) Thermal vs ULV
 - i) Comparable efficacy
 - ii) ULV is less offensive and less hazardous
 - (1) Less traffic hazard
 - (2) Less smell
 - iii) Thermal has better penetration
 - iv) ULV uses much less volume
 - v) ULV technology has become much more efficient
 - (1) High pressure
 - (2) Rotary atomizers
 - (3) Gas handheld
 - (4) Electric
 - (5) Backpack
 - (6) Portable units
 - (7) Multi-purpose sprayers
 - (8) Truck-mounted
 - (9) Aerial applicators
- c) ULV maintenance
 - i) Scheduled at least every 6 months
 - ii) Checklist
 - (1) Fluids
 - (2) Fittings
 - (3) Belts
 - (4) Chemical lines
 - iii) Cleaned regularly
 - iv) Cleaned and stored at end of season
- d) Calibration
 - i) Determine application rate (product label)
 - ii) Verify chemical flow rate
 - iii) Verify droplet size
 - iv) Calculations
 - (1) Based on length x width x speed
 - (2) Speed is usually set 10, 15, or 20 mph
 - (3) Acreage is usually set
 - (4) Cost per acre
 - (a) Cost per gallon x pounds of active ingredient per gallon
 - (b) For mixed products add cost of solvent oil
 - (5) Active per acre
 - (a) Active per gallon divided by 128 (ounces)
 - (b) Multiply active per ounce x ounces per minute
 - (c) Divide by acres per minute
 - (6) Ounces per minute
 - (a) Multiply desired active per acre x acres per minute
 - (b) Divide by lbs of active per ounce
 - v) WHY calibrate

- (1) The label is the law
- (2) Records must be kept to comply with the label
- (3) Will get best results from the chemical applied
- vi) Verifying flow rate
 - (1) Push or pull system?
 - (a) Orifice pull machine
 - (i) Graduated cylinder
 - (ii) How much comes out when machine is running
 - (b) Pump push machine
 - (2) Check your machine specs
 - (3) Pumping systems
 - (a) Types
 - (i) Flow meters
 - (ii) SCAMP
 - (iii) GIS systems
 - (iv) Leco
 - (v) Other
 - (b) Functions
 - (i) Record keeping
 - (ii) Locations
 - (iii) Other
- vii)Droplet sizing
 - (1) Now required on the label
 - (2) 10-20 μ droplets for cold fogging (ULV)
 - (3) 1-5 μ droplets for thermal fogging
 - (4) AIMS or hotwire unit best results
 - (5) Vendors will come out to site to verify droplet size
 - (6) Other methods
 - (a) Laser
 - (b) Teflon-coated slides
- e) Weather issues
 - i) Strong inversion (cooler air closer to ground) is best
 - ii) Rain and wind are limiting factors
- f) Evaluation of control is very important

Third Session

- 1) Columbus Health Dept Vector Control Shawn Taylor
 - a) History
 - i) Started about 40 years ago
 - ii) Located in Environmental Health
 - iii) Federal grant
 - iv) Local board of health adopted program
 - v) Good support
 - b) Topics
 - i) Coverage area

- (1) 221 square miles
- (2) Divided into 2 sections
- (3) Fort Benning in area started working with them to get better coverage
- ii) Work functions
 - (1) April-Oct
 - (a) Handle complaints
 - (b) Routine spray routes (mostly larvicide)
 - (c) Catch basin control
 - (d) Started surveillance
 - (2) Nov-March
 - (a) Rat complaints
 - (b) Bait sewers (~60/day)
 - (c) Check for bait acceptance
 - (d) Also do some roach complaint and control
- iii) Chemicals used -
 - (1) Mosquito control
 - (a) Larvicide
 - (b) Adulticide
 - (c) Surveillance
 - (i) 5 of each trap
 - (ii) Trap once a week
 - (2) Rat control
 - (a) Maki blocks
 - (b) Other
- 2) The Clarke Technical Center Jim McNelly
 - a) Located outside of the Chicago area
 - b) 6 companies within Clarke Mosquito Control
 - i) Service side
 - ii) Products side
 - (1) Chemicals
 - (2) Equipment
 - c) Technical Center Overview
 - i) New product development
 - ii) CEMM surveillance lab
 - iii) Environmental Science
 - d) New Product Development
 - i) Largest program
 - ii) Cost of registration \$20 to 40 million
 - iii) Key partnerships
 - (1) Universities
 - (2) Military DWFP
 - (3) Members of industry (agriculture)
 - iv) Formulations Lab
 - (1) New products
 - (2) Tweaking existing products
 - (3) Analyzing products

- v) Pilot Room
 - (1) Evaluate manufacturing process
 - (2) Equipment evaluation
 - (3) Testing programs
- vi) Analytical Lab
 - (1) Quality control
 - (2) Product testing
 - (3) Further development
- vii)Bioassay Lab
 - (1) Insectary
 - (2) Lab testing
 - (3) Supports field testing at Field Stations
- viii) Chem-ID Lab
 - (1) Vector testing
 - (2) Vector ID
- e) Environmental Science
 - i) Most work occurs in the field
 - ii) Product testing support for EPA registration
 - iii) Technical support to sales and customers
 - iv) Calibration and characterization of equipment on a large scale
 - v) Surveillance and quality assurance during emergency spray operations
 - vi) PESP
 - vii)Mosquito U
- f) Tech Center is the science behind Clarke
- g) Contact Vicki Lubas
- 3) New Adulticide Charlie Pate / Bill Reynolds
 - a) New product for Central Life
 - b) Active ingredient etofenprox
 - i) Been around since the 1980s
 - ii) Developed for crops
 - iii) First US registrations early 2000s
 - iv) Used in cat & dog control products
 - v) Central Life acquired rights in 2005
 - c) Background
 - i) Not a carbamate
 - ii) Not a organophosphate
 - iii) Not a typical pyrethroid
 - iv) Broad spectrum control
 - d) Mosquito control
 - i) Zenivex E20
 - ii) Non-ester pyrethroid
 - iii) Ether pyrethroid
 - iv) Contains only carbon, hydrogen, and oxygen
 - v) Toxicology
 - (1) No chlorines lower LD_{50}
 - (2) Low mammalian toxicity

- (3) Low avian toxicity
- (4) Reduced risk under EPA classifications
- vi) Sodium channel blocker
- vii)Contact or ingestion
- viii) Quick permanent knockdown
- e) Formulation
 - i) Oil-based for ULV
 - ii) No synergist
 - iii) 1.5 lb per gallon
 - iv) 20% etofenprox by weight
 - v) Application rates; 0.00175, 0.0035, 0.007 pounds per acre
 - vi) Droplet range: $10-30\mu$
 - vii)CAUTION
- f) Testing
 - i) Testing done previously under the DWFP
 - ii) More than 30 trials
 - iii) 14 mosquito species
 - iv) Trials throughout US
 - v) Excellent at all label rates
 - vi) Standard testing procedures
 - (1) Caged mosquito trials
 - (2) Ground ULV application
 - (3) Droplet spinning impinger
 - vii)Efficacy
 - (1) 20 minutes
 - (2) 1 hour
 - (3) 12 hours
 - (4) 24 hours
 - viii) Weather and flux deposition monitored
 - ix) Applications made diluted and undiluted
 - x) Efficacy trials 2008
 - (1) 5 locations
 - (2) Under 10 acres
- g) Results
 - i) July 2008, Palmetto FL
 - (1) Targeted Oc taeniorhynchus
 - (2) % mortality was good overall
 - (3) Added fluorescence to spray to look at flux
 - (4) Low deposition resulted (as expected) in low control
 - ii) August 2008, Salt Lake Mosquito Control
 - (1) Targeted species: Cx tarsalis and Cx pipiens
 - (2) Great control at mid-level rates throughout all time intervals
 - iii) Sept 2008, Norfolk VA
 - (1) Mid-label rates
 - (2) Used lab reared and local mosquito populations
 - (3) Good control overall

- (4) Low droplet density equaled low mortality
- h) Summary
 - i) No difference in equipment used
 - ii) Mortality good with diluted or undiluted
 - iii) Quick permanent knockdown within 20 minutes
 - iv) Tested against 14 species
 - v) Low toxicity profile
 - vi) New tool for the toolbox
 - vii)No PBO synergist needed
 - viii) No odor
 - ix) No aquatic set-backs
 - x) For use as ground application or aerially
- i) Resistance
 - i) Does not appear to be cross-resistance with other pyrethroids
 - ii) May be able to be used in areas with pyrethroid-resistant mosquitoes
- j) Distributer ADAPCO
- k) www.altosid.com
- 4) Arboviral Surveillance in Georgia Danny Mead
 - a) Dead bird submissions are down
 - i) Funding
 - ii) Apathy
 - iii) Birds still providing good info
 - b) Mosquito pools
 - i) Submissions low this year
 - ii) Funding decrease
 - iii) Fewer counties submitting
 - c) Many viruses detected through this testing
 - d) Interesting findings
 - i) Flanders and WNV
 - (1) Early in the year we see Flanders
 - (2) Mid season WNV
 - (3) Late season Flanders
 - (4) Cx restuans / Cx quinquefasciatus association??
 - ii) New findings
 - (1) South River virus
 - (2) Uncharacterized Rhabdovirus (American coot)
 - (3) Uncharacterized Orbivirus (Oc taeniorhynchus)
 - (4) Flanders virus variant (picked up earlier and identified as Hart Park)
 - iii) SCWDS great resource!!!
 - iv) Providing a service to Mosquito Control and Public Health
- 5) A New Option in Midge Control Elmer Gray
 - a) Chironomid midges (muffleheads)
 - i) Do not transmit disease
 - ii) Difficult to ID and control
 - iii) Nuisance problem
 - iv) Can be ecologically important

- v) Tolerant of poor water quality
- b) Life cycle
 - i) Nematocera Family Chironomidae
 - ii) Closely related to mosquitoes and black fly
 - iii) Very common
 - iv) Four life stages: egg, larva, pupa, adult
 - v) 4 instars (blood worms)
 - vi) Length of life cycle is temperature dependent
 - vii)Feed on organic materials
 - viii) Found in substrate
 - ix) Very high populations
 - x) Asynchronous emergence
 - xi) Many, but not all, species susceptible to Bti
- c) Adults
 - i) Short-lived
 - ii) Do not feed
 - iii) Eggs laid on grass around ponds
- d) Control options
 - i) Bactimos PT (Bti)
 - ii) Newly registered for midge control
 - iii) Pellet formulation
- e) Efficacy trials
 - i) 2006 & 2007
 - ii) Man-made ponds
 - iii) Bank and boat applications
 - iv) Treated and untreated control pond sampled
 - (1) 2006 5 sampling dates
 - (2) 2007 6 sampling dates (trial 1)
 - (3) 2007 5 sampling dates (trial 2)
 - v) Marayamu backpack sprayer
 - vi) Whole pond application vs band application
 - (1) Band -
 - (a) 20' from bank
 - (b) Firm sand area
 - (c) 3 -6 feet deep on average
 - (2) Band applications seems to be effective in these ponds
 - (3) Treat every two to three weeks
 - (4) Firm sandy bottoms are highly productive
 - (5) Mucky areas not as productive material may be too fine for midges to make tubes
 - (6) Pond substrate must be characterized first
 - vii)Sampling Eckman dredge
 - (1) 15 samples
 - (2) 3 subsamples from each sample
 - (3) Washed material through a sieve
 - (4) Transfer material to enamel pan

- (5) Pick out larvae
- viii) Results
 - (1) 2006 saw a drop in midge larvae in treated ponds
 - (2) 2007 -
 - (a) No control
 - (b) Product stored in metal container
 - (c) Got too hot
 - (d) Lost efficacy
 - (3) 2007 (trial 2)
 - (a) New product
 - (b) Got great control
- ix) Summary
 - (1) ~21 days of control
 - (2) Got about a 50% reduction
- f) Hilton Head Plantation
 - i) Lots and lots of midges
 - ii) Band treatment
 - iii) 2 weeks later no midges
 - iv) No complaints from habitual complainer
- g) Good results so far
- h) New product roll out within last month
- i) No easy answers to midge control
- 6) Adult Mosquito Field ID Bruce Harrison
 - a) <u>http://www.gamosquito.org/resources/fguideID.pdf</u>
 - b) Basic Info
 - i) No one can field ID all species in a given area
 - ii) Guesswork based on knowledge and information
 - iii) Never completely accurate
 - iv) ID should be confirmed under a microscope
 - v) Very valuable tool
 - c) Advantages
 - i) Provides instant knowledge
 - ii) Can pinpoint time of day the problem is occurring
 - d) Important steps
 - i) Need to know how to tell a mosquito from other Diptera
 - ii) Need to know the phenology when species are present
 - iii) Need to know habitats
 - iv) Need to know behavior
 - v) Need to know unique characters
 - e) Everyone should be able to ID Aedes albopictus
 - f) Characteristics
 - i) Size
 - ii) Color
 - iii) Patterns
- 7) Mosquito Control Update for South Carolina LA Williams
 - a) ~70 different programs within SC

- i) Programs run the full gamut of control efforts, similar to GA
- ii) State works with programs to help them do control correctly and successfully
- iii) State-wide contract for mosquito control products
- b) 46 counties
 - i) Health department in each county
 - ii) State health department
 - iii) Mosquito control affiliated with local government, not mosquito control
- c) Issues
 - i) Legal restraints
 - ii) Politics
 - iii) Funding issues / economics
 - iv) Social acceptance
- d) Obligation is to the public
- e) Program elements
 - i) Commercial suppliers
 - (1) Chemicals
 - (2) Equipments
 - ii) Good management
 - iii) Training
 - iv) Media
 - v) State Lab
- f) Surveillance programs
 - i) WNV
 - (1) Birds 3 WNV+ crows
 - (2) Mosquito pools 7 WNV+ pools
 - (3) No human cases
 - (4) No horse positives
 - ii) EEE
 - (1) 5 EEE+ horses
 - (2) No human cases
 - iii) Provides data for quick response against disease
 - iv) Set up vector specialists throughout state
 - (1) From environmental health
 - (2) Trained in surveillance and ID
 - (3) Provide local surveillance support
 - (4) Work with local health departments
 - (5) Programs have continued even with loss of grant money
- g) Dept of Pesticide Regulation at Clemson University
 - i) Good relationship
 - ii) Require certification
 - iii) Regulators come to all training sessions
- h) IPM focus
- i) EDUCATION & TRAINING are a must
- j) South Carolina Mosquito Control Association http://www.scmca.net/
 - i) Working relationships

- (1) South Carolina Association of Counties
- (2) Municipal Association of South Carolina
- ii) Have been very helpful in getting info out
- k) Work with Chatham County Mosquito Control dealing with spoil areas that abut GA border
- l) Tire program
 - i) Money goes for local abatement
 - ii) Has helped reduce Ae albopictus problem
- m) Do the right thing, at the right time, for the right reason!

17 Oct:

Fourth Session

- 1) Adult Mosquito Ecology at Ichauway Eva Whitehead
 - a) What is Ichauway
 - i) Nature Preserve
 - ii) Southwest GA
 - iii) Pine and wiregrass
 - iv) Mandate to study malaria/mosquitoes in area
 - b) Project
 - i) Initial comparison between urban and rural mosquito communities
 - ii) Changed to adult ecology in rural area
 - iii) Dilution effect theory arbovirus prevalence lower in areas with more host diversity
 - c) Objective
 - i) Mosquito community make-up
 - ii) Host feeding
 - iii) Arboviral prevalence
 - d) Study sites
 - i) 8 sites
 - ii) Located throughout area
 - iii) Near wetlands, ponds, rivers, and swales
 - iv) Variety of habitats
 - e) Data
 - i) Weather
 - (1) Temperature
 - (2) Relative humidity
 - (3) Rainfall
 - ii) Canopy cover
 - iii) Mosquitoes
 - (1) Once a week
 - (2) CDC light trap
 - (3) CDC gravid trap
 - (4) Resting boxes blood fed females
 - (5) Aspirator blood fed females
 - f) Lab

- i) Separate and ID mosquitoes
 - (1) Species,
 - (2) Sex
 - (3) Number
- ii) Pooled
- iii) Placed in ultralow freezer
- g) Preliminary results
 - i) Environmental data fluctuations over time
 - (1) Construct model
 - (2) Lots of data
 - ii) Mosquitoes
 - (1) 30 species found
 - (2) Ae vexans most common at all sites
 - (3) May 13 25 weeks
 - (4) Total females collected over time
 - (5) 3000 females collect up through end of Aug
 - iii) Hurricane Fay
 - (1) 12-18 inches of rainfall in 4 days
 - (2) Huge spike in mosquito numbers starting in Sept
 - (3) Numbers dropped back off in week 20
 - iv) Species composition
 - (1) An crucians high early in season
 - (2) Ps cyanescens peaked somewhat later
 - (3) Huge peak in Psorophora spp after Fay
 - (4) Species composition and number varied between sites
 - v) Further testing
 - (1) 175 blood fed females
 - (a) Ae vexans
 - (b) An quadrimaculatus
 - (c) Cx salinarius
 - (d) Ps ferox
 - (e) A few others
 - (2) A bunch of pools to test for virus at SCWDS
- h) Practical Importance
 - i) Species map updates
 - ii) Arbovirus info from a county that has done very little surveillance
- i) More to come at AMCA 2009!
- 2) Mosquito Control Ft Stewart/Hunter Army Airfield Cpt Hee Kim
 - a) Problems occur when various groups remain isolated
 - b) Purpose
 - i) Importance of surveillance
 - ii) Problems faced
 - c) Surveillance
 - i) Vital for good vector control
 - (1) Location
 - (2) Species

- (3) Density
- ii) Save money
- d) Location
 - i) Big installation 285,000 acres+
 - ii) Multi-county location
 - iii) Large wetland
 - iv) 2 installations located 30 miles apart
 - v) Limited personnel doing surveillance
- e) IMPORTANT
 - i) Traps must be located at places that are worth controlling
 - ii) Remote wetland sites are always over the threshold for control
 - iii) Don't need to be controlled because no one is out there on a regular basis
- f) Info management
 - i) GPS/GIS
 - ii) Data logging
- g) Communication issues
 - i) Need to do survey reports
 - ii) Lack of continuity between personnel
 - (1) Deployment
 - (2) Entomologist changes every 3-4 years
 - iii) Need to communicate with civilian mosquito control as well
 - iv) Breakdown in communication between:
 - (1) Complaints
 - (2) Surveillance
 - (3) Control
- h) Solutions
 - i) Concentrate trapping where people are located
 - (1) 7 semi-permanent sites
 - (2) 3 gravid trap sites
 - (3) Follow up on complaint calls
 - (4) 4 pre-established trap sites outside housing area
 - ii) Focus on vector species
 - iii) Action threshold
 - (1) Depends on trap and location
 - (2) Roughly 15 females in a light traps
 - iv) Army also issues DEET-based repellent and treated clothing
 - v) Asked for help from Chatham County Mosquito Control
 - vi) Used 4 black light traps
 - vii)Info management
 - (1) GPS/PDA
 - (a) Site info captured and stored for each session
 - (b) Species info stored
 - (2) GIS and Google Earth used to visualize data
 - (3) NEED A DATABASE (Access and Excel)
 - viii) Mosquitoes sent to USA-CHPM for ID and testing
 - ix) Weekly report sent out with week comparisons

- (1) Set up everything to be automatic
- (2) No longer need one person to be there to update the info
- x) Cross-training is a vital part of the solution
- i) Results
 - i) Improved communications
 - ii) Historical data stored
 - iii) Shouldn't need a learning period when new personnel come on board
 - iv) Better relationships both on the installations and off
- j) What's coming?
 - i) Modular database
 - ii) New trapping methods
 - (1) Alternate CO₂ sources
 - (2) Need to do comparison study
 - iii) Shift to more focus on larval control
 - (1) Operator friendly can work during the day
 - (2) Cost-benefit
 - (3) ~1200 storm drains
- k) Conclusions
 - i) Surveillance provides a guide for control
 - (1) Recommendations need to be made based on data
 - (2) Cost-benefit
 - ii) Allows evaluation of control efforts
 - iii) Record keeping is vital
 - iv) Communication is a must
 - v) Need to integrate new technology
 - vi) Evaluate, evaluate, evaluate all the time
- 3) Industry Spotlight
 - a) Clarke Mosquito Control Mike Leahy
 - i) One stop shop
 - (1) Emergency control
 - (2) Equipment
 - (3) Larvicide
 - (4) Adulticide
 - (5) Technology products
 - ii) Research and development
 - iii) Services
 - (1) Droplet testing
 - (2) Calibrations
 - (3) Aerial surveys
 - (4) GIS routing
 - (5) Education
 - (6) Equipment repair
 - b) B&G David Sykes
 - i) Full range of products and equipment
 - ii) Product demo Sentinel GIS
 - (1) ESRI-based

- (2) ArcPad
- (3) Modular components
- (4) Simplified field data collection
 - (a) Prepare
 - (b) Collect
 - (c) Report
- (5) Designed by Electronic Data Solutions
- c) Bayer Sciences
- 4) WNV in Urban Areas: From Chicago to Atlanta Uriel Kitron / Gonzalo Vasquez
 - a) Chicago
 - i) 2001 some WNV activity
 - ii) 2002 >680 human cases of WNV
 - iii) 2005 and 2006 also big WNV case years
 - iv) Outbreak years were hot and dry
 - v) 2001 2 foci of WNV+ birds
 - vi) 2002 human cases at same foci as WNV+ birds in 2001
 - (1) Old floodplain areas
 - (2) Historic mosquito-borne disease areas
 - vii)Study
 - (1) Looked at housing, vegetation, socioeconomic status, and land use
 - (2) Most cases fit into one category
 - (a) Mostly white
 - (b) Moderate vegetation
 - (c) Housing from 40s and 50s
 - (d) Moderate population density
 - (3) Higher risk areas characterized by undocumented storm drains, many in people's backyards
 - (4) 4 years study will continue for 5 more years
 - (5) 12 residential areas
 - (6) 4 "natural" field areas
 - (7) Variety of mosquito collection tools
 - (8) Collected birds
 - (9) Blood meal analysis
 - viii) Results
 - (1) Mosquitoes
 - (a) Rapid rise in MIR
 - (b) Spatial heterogeneity
 - (c) Feeding on sparrows, robins, and humans
 - (2) Looked at bird density/acre
 - (a) Robins most important
 - (b) May change later in season
 - (3) Virus a lot of variety seen
 - ix) Conclusions
 - (a) Important factors
 - (i) Landscape ecology
 - (ii) Vector ecology

- (iii) Avian host ecology
- (iv) Virus evolution
- (b) Fine scale variations are important
- b) Atlanta
 - i) Far fewer cases seen in Georgia
 - (1) Why?
 - (a) Different bird species involved
 - (b) Different vector species
 - (2) Focus on Atlanta
 - (a) CSS systems
 - (b) Is there a connection between CSOs and WNV?
 - ii) Geospatial analysis
 - (1) Significant clustering of WNV infection rates
 - (a) High
 - (b) Low
 - (2) Working at census tract level
 - (3) Used 2001-2007 data
 - (4) Association seen between:
 - (a) CSOs and WNV cases
 - (b) Birds
 - (i) CSOs and WNV+ birds
 - (ii) Park areas and WNV+ birds
 - (c) Mosquito density and CSOs
 - (d) Infected mosquitoes and CSOs
- 5) Emerging Topics in Entomology in Georgia Ray Noblet
 - a) Entomology
 - i) Insect biology
 - ii) Insect sciences
 - b) Many different disciplines involved
 - c) Insects affect the lives of everyone
 - d) Applied and research foci
 - e) Strong economic base
 - f) Almost all insect species are beneficial
 - g) Various projects
 - i) Honey bees
 - ii) Forensic entomology
 - iii) Biosecurity/biosafety
 - iv) Insects in warfare
 - h) UGA
 - i) Land Grant school
 - ii) 5 teaching faculty
 - iii) 15 research faculty
 - iv) 5 researchers
 - v) 9 extension and outreach people
 - i) Academic programs
 - i) BSES BS in Environmental Sciences/Entomology

- ii) MPPPM Masters of Plant Protection Pest Management
- iii) Griffin and Tifton campuses
- j) Research
 - i) Facilities
 - (1) Athens basic comprehensive
 - (2) Griffin urban entomology
 - (3) Tifton agricultural entomology
 - ii) Categories
 - (1) Insect host/pathogen molecular biology
 - (2) BT applied biotech, biocontrol
 - (3) Mosquito endocrinology/genomics
 - (4) Insect immunology
 - (5) Vector biology
 - (a) Insect disease transmission plants and animals
 - (b) Host immune modulation by insect vectors
 - iii) Work with industry and other agencies
- k) Areas of focus
 - i) Urban Entomology
 - (1) Home
 - (2) Landscape plants
 - (3) Turf
 - (4) Pest species
 - (a) Fire ants
 - (b) Native ants
 - (c) Termites
 - ii) Systematics, Taxonomy, Evolutionary Biology
 - (1) Beetles
 - (2) Thrips
 - (3) Fire ants
 - iii) Stream and Wetland Ecology and Environmental Toxicology
 - (1) Aquatic insects
 - (2) Wetland inverts
 - (3) Vector ecology
 - iv) IPM
 - (1) Using all the best tools available
 - (2) Control economically
 - (3) Control with minimum of environmental disturbance
 - v) Extension programs
 - vi) Educational programs
 - (1) Public schools
 - (2) Community outreach
- l) Employment opportunities
 - i) Pay scale is good
 - ii) Jobs are available

Business Meeting

- Secretary Report
 - 2007 86 participants
 - o 2008 75 participants
- Treasury Report
 - Education Account ~\$4000
 - Regular Account ~\$5072
- New Board
 - President Mark Blackmore
 - VP Candace Royals
 - 1-Year Member: Bobby Moulis
 - 2-Year Member: Shawn Taylor
 - 3-Year Member: Ben Brewer
 - Secretary/Treasurer: Robert Seamans
 - Extension Rep Elmer Gray
 - Public Health Rep Rosmarie Kelly
 - Commercial Member Charlie Pate
- 2009 meeting: Oct 21-23 at Georgia Center in Athens