Canopy Penetration and Deposition of Barrier Sprays from Electrostatic and Conventional Sprayers

Muhammad Farooq, Todd W. Walker, Cdr Daniel Szumlas
Navy Entomological Center of Excellence, Jacksonville, FL.

Wesley C. Hoffmann, Bradley K. Fritz
USDA-ARS-Areawide Pest Management Research Unit, College Station, TX
Background

• **Insecticidal barrier treatments**
 To prevent insects from entering or damaging a building

• **Barrier treatments to vegetation**
 potential to prevent insects from moving into an area surrounded by the treated vegetation.

• **Barrier treatments for insect control application**
 localized application to vegetation or natural/man-made surfaces (resting place for mosquitoes)

• **The application technique**
 intended to reduce not to eliminate the adult insect population.
Background

- Expected Benefits
 - timeliness
 - reduced cost
 - reduced pesticide use.

ULV sprays a name in public health spray application
Electrostatic is the talk of the time
Objective

• To evaluate the effectiveness of barrier sprays from electrostatic and conventional sprayers.
• Evaluation based on penetration and deposition
Site 1

Natural vegetation under a forest stand at
Camp Blanding Joint Training Center, Starke, FL

Treatment Key
S1 Spectrum Electrostatic
S2 Electrostatic Nozzle on Stihl
S3 Electrolon
S4 Buffalo Turbine
S5 Stihl 420
Site 2

Treatment Key
S1 Spectrum Electrostatic
S2 Electrostatic Nozzle on Stihl
S3 Electrolon
S4 Buffalo Turbine
S5 Stihl 420
Buffalo Turbine mist sprayer (BUTU).

Truck/trailer mounted.
Four Teejet 8502 nozzles in a cluster
Flow rate up to 37.9 l/min
Electrolon BP-2.5TM (ELEC)

• electrostatic mist blower

• Battery operated induction charge nozzle.

• Flow rate 194 ml/min.
Spectrum Electrostatic Sprayer (SETM).

- Truck-mounted electrostatic mist sprayer
- Droplet charging by conduction
- Flow rate up to 26.5 l/min
Stihl 420 (STHL)

Backpack mist blower

Flow rate: 0.14 – 3.0 l/min.
Spectrum Electrostatic Nozzle on Stihl
(SENS)
Weather Conditions

<table>
<thead>
<tr>
<th>Sprayer</th>
<th>Wind Speed (Range), km/h</th>
<th>Temperature (Range), °C</th>
<th>R.H. (Range), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTU</td>
<td>1.2 (0.0 – 2.4)</td>
<td>29.7 (28.2 – 31.1)</td>
<td>59 (50 – 69)</td>
</tr>
<tr>
<td>ELEC</td>
<td>1.9 (1.5 – 2.4)</td>
<td>29.5 (28.3 – 30.8)</td>
<td>60 (49 – 71)</td>
</tr>
<tr>
<td>SENS</td>
<td>0.7 (0.0 – 1.5)</td>
<td>30.1 (28.3 – 32.0)</td>
<td>61 (53 – 69)</td>
</tr>
<tr>
<td>SETM</td>
<td>3.9 (3.9 – 4.0)</td>
<td>29.7 (28.0 – 31.4)</td>
<td>61 (49 – 73)</td>
</tr>
<tr>
<td>STHL</td>
<td>2.7 (0.8 – 3.7)</td>
<td>29.9 (27.2 – 32.3)</td>
<td>63 (49 – 72)</td>
</tr>
</tbody>
</table>
Spray Material

• TalstarTM (7.9 % Bifenthrin)

• Application rates of 21.8 ml/300 m of treated row

• Caracid Brilliant Flavine FFS fluorescent dye
Application parameters and Tank Mixes

<table>
<thead>
<tr>
<th>Sprayer</th>
<th>Flow rate L/min</th>
<th>Travel Speed km/h</th>
<th>Insecticide ml/L</th>
<th>Dye g/L</th>
<th>Sprayer Air Velocity (m/s) 61 cm away</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTU</td>
<td>4.67</td>
<td>8.0</td>
<td>2.11</td>
<td>1.91</td>
<td>30.5</td>
</tr>
<tr>
<td>ELEC</td>
<td>0.20</td>
<td>3.2</td>
<td>19.70</td>
<td>17.77</td>
<td>0.7</td>
</tr>
<tr>
<td>SENS</td>
<td>0.84</td>
<td>3.2</td>
<td>4.69</td>
<td>4.23</td>
<td>29.3</td>
</tr>
<tr>
<td>SETM</td>
<td>6.75</td>
<td>8.0</td>
<td>1.46</td>
<td>1.32</td>
<td>31.0</td>
</tr>
<tr>
<td>STHL</td>
<td>2.77</td>
<td>3.2</td>
<td>1.42</td>
<td>1.28</td>
<td>30.3</td>
</tr>
</tbody>
</table>
Hotwire Droplet Sizing
Droplet Characteristics

<table>
<thead>
<tr>
<th>Sprayer</th>
<th>$DV_{0.1}$ (µm ± SD)</th>
<th>$DV_{0.5}$ (µm ± SD)</th>
<th>$DV_{0.9}$ (µm ± SD)</th>
<th>% Vol <50 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTU</td>
<td>97.0 ± 28.1</td>
<td>204.7 ± 56.9</td>
<td>375.5 ± 98.7</td>
<td>2.3 ± 2.1</td>
</tr>
<tr>
<td>ELEC</td>
<td>12.9 ± 3.9</td>
<td>49.7 ± 18.8</td>
<td>117.9 ± 36.7</td>
<td>50.7 ± 13.0</td>
</tr>
<tr>
<td>SENS</td>
<td>53.3 ± 6.9</td>
<td>135.4 ± 10.0</td>
<td>216.0 ± 44.2</td>
<td>8.7 ± 2.6</td>
</tr>
<tr>
<td>SETM</td>
<td>80.7 ± 4.1</td>
<td>186.3 ± 4.7</td>
<td>414.7 ± 110.1</td>
<td>4.2 ± 1.1</td>
</tr>
<tr>
<td>STHL</td>
<td>63.3 ± 14.8</td>
<td>162.7 ± 32.6</td>
<td>285.9 ± 126.8</td>
<td>7.0 ± 2.9</td>
</tr>
</tbody>
</table>
Sampling Locations

Sprayer Travel and spray discharge direction

Line A

Line B
2 leaves collected at 1 & 2 m heights

Line D
10-20 m

Line C

> 15 m

Road

0 1 3 5 m

2 leaves collected at 1 & 2 m heights

10-20 m

> 15 m
Leaf Washing
Mean Deposition

- Top of leaf
- Bottom of leaf

Sprayers

- BUTU
- ELEC
- SENS
- SETM
- STHL
Penetration

Canopy depth, m
CONCLUSIONS

• Sprayers producing larger droplets proved significantly better.

• Sprayers with higher air velocity at the nozzle discharge proved significantly better.

• Electrostatic sprayers have no improvement over the conventional sprayers.

• No difference between truck mounted and back pack sprayers. => Selection based on area to be treated.
ACKNOWLEDGMENTS

For grant from the Deployed War-Fighter Protection (DWFP) Research Program, funded by the U.S. Department of Defense through the Armed Forces Pest Management Board (AFPMB).