#### Larval Equipment Calibration



## Why Calibrate?

- Essential to assure correct application rate
- Saves material and money
- Assures compliance with the label and the law



### **Equipment Calibration**

- Simple, but often overlooked step
- Every applicator & piece of equipment are different
- Must factor in the applicator, equipment & habitat



## Factors Affecting Application Rates

- speed of travel
- width of swath
- flow rate
- dilution rate



## **Speed of Travel**

- Aircraft or vehicle speed can be adjusted
- Walking speed can be adjusted but not recommended
- Best to walk at natural pace



## Width of Swath

- Variations determined by:
  - equipment & settings
  - travel speed
  - habitat type (vegetation)
  - product formulation



### **Flow Rate**

- Also varies based upon equipment, settings, and formulation selected
- For easily adjustable flow rates:
  - best to adjust flow rate to desired speed, swath, & application volume



### **Dilution Rate**

- Constant for granular formulations
- Widely variable for liquid applications
- Adjustments needed when flow rates are not easily adjusted



### **Calibration Formulas**

Flow Rate = (Application Rate x Speed x Swath Width)/495

Application Rate = (Flow Rate x 495)/(Speed x Swath Width)

|          | Para |
|----------|------|
| AN       | Appl |
|          | Flow |
|          | Spee |
|          | Swat |
|          |      |
| $\wedge$ |      |

| Parameter        | US Liquid      | US Dry         |
|------------------|----------------|----------------|
| Application Rate | Gallons/Acre   | Pounds/Acre    |
| Flow Rate        | Gallons/Minute | Pounds/ Minute |
| Speed            | Miles/Hour     | Miles/Hour     |
| Swath Width      | Feet           | Feet           |



## **Measuring Walking Speed**

- Use your own comfortable pace
- Mark a known distance
- Time your walking of that distance
- Repeat to ensure accuracy











# **Measuring Flow Rates**

- Easily determined with a graduated cylinder or other liquid measuring device
- Spray liquid into the cylinder for one minute
- Flow rate per minute is determined by the volume in the cylinder
- Once the flow rate is known, total delivery
  volume per area can be calculated



#### **Measuring Flow Rate**



### Measuring Granular Flow Rates

- Two methods can be employed
  - Weigh, run & weigh method
  - Catch and weigh method



#### **Measuring Flow Rate**



#### **Measuring Flow Rate**



# **Standardizing Applications**

- Repeat calibration steps regularly throughout the season
- Individual applicators should practice their pace and check their swath measurements
- Practicing these motions will assure consistent and effective delivery of larvicides



