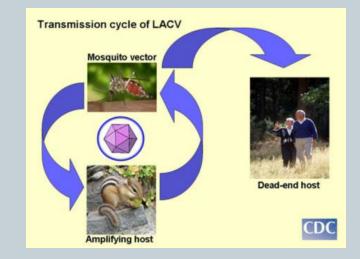
La Crosse Encephalitis in Eastern Tennessee

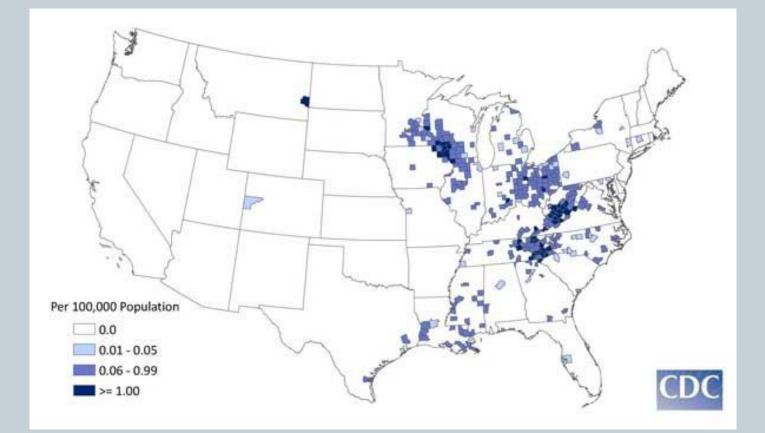


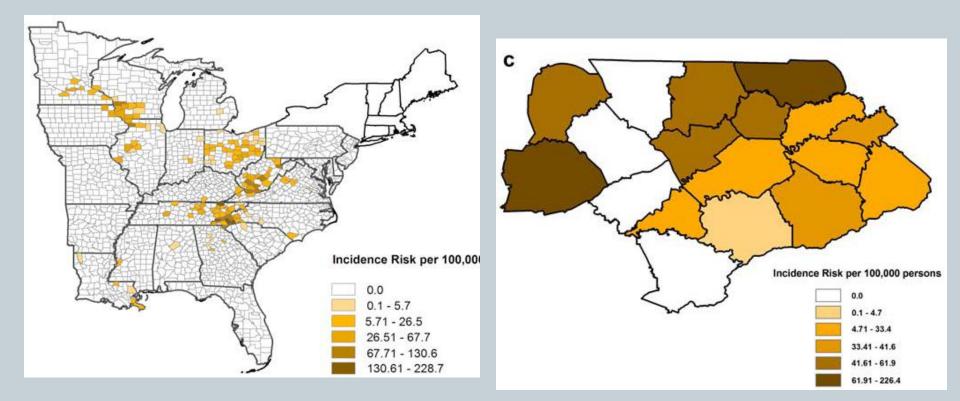
Abelardo C. Moncayo, Ph.D. Communicable and Environmental Disease Services Tennessee Department of Health

Clinical Presentation and Epidemiology

- Fever, headache, nausea, vomiting, fatigue, lethargy.
- Meningitis, encephalitis
- Neurological sequelae: recurrent seizures, hemiparesis, cognitive and neurobehavioral abnormalities
- Case fatality less than 1%
- Supportive therapy (including seizure control)

- Most cases in children under 16
- Average 80-100 cases reported per year
- Most cases July September
- Boys mostly affected

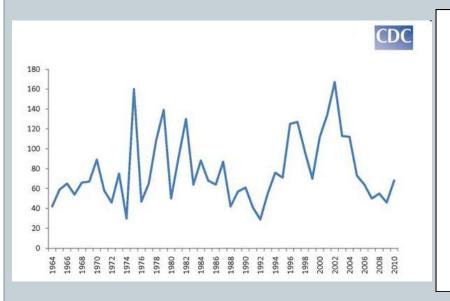


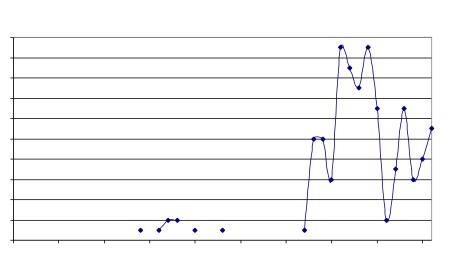


California Serogroup Virus Neuroinvasive Disease Cases, 1964-2010

California Serogroup Virus Neuroinvasive Disease Average Annual Incidence by County, 1996-2010

Unsmoothed risk at county level for children 15 and under, 2003-2007


Haddow, AD, Odoi A (2009) The Incidence Risk, Clustering, and Clinical Presentation of La Crosse Virus Infections in the Eastern United States, 2003-2007. PLoS ONE 4(7): e6145.


Distribution of unsmoothed risk of La Crosse virus infections at the county level for eastern Tennessee of population 15 years and younger, 1997-2006

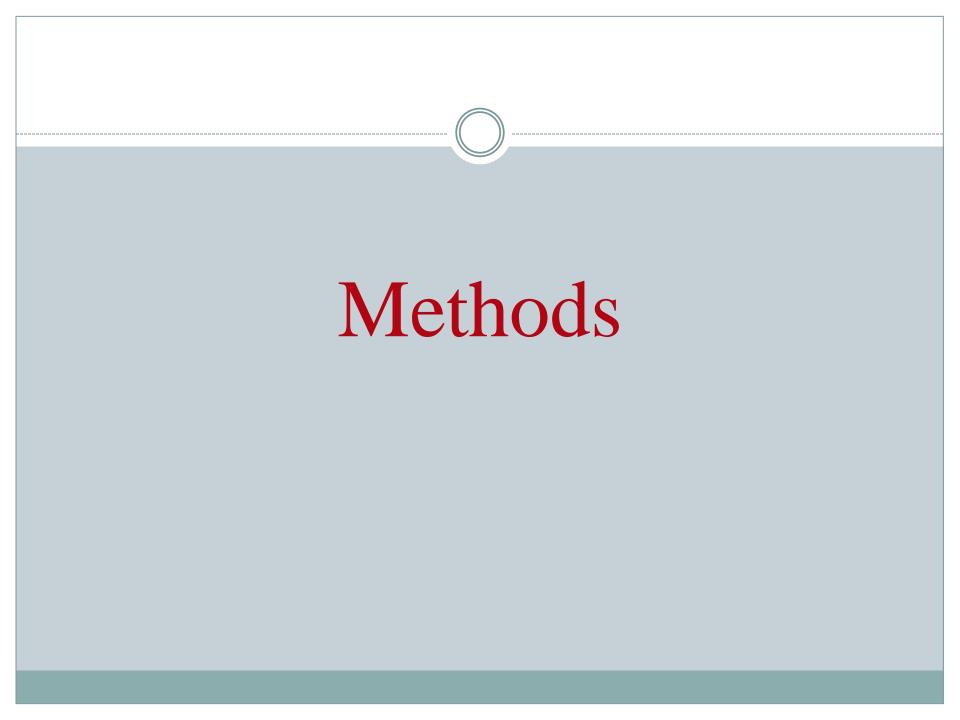
Haddow AD, Jones CJ, Odoi A (2009) Assessing Risk in Focal Arboviral Infections: Are We Missing the Big or Little Picture? PLoS ONE 4(9): e6954.

Emergence in Tennessee

- From 1964-1996, only 9 cases in TN
- 1997 cluster of 10 cases in eastern TN
- Cases increased about the same time in WV and NC
- Over 160 cases reported in TN

Vectors

- Ochlerotatus triseriatus
 - Treehole mosquitoPrimary vector
- Aedes albopictus
 - Asian tiger mosquito New introduction
- Ochlerotatus japonicus
 O Asian bush mosquito
 O Newer introduction



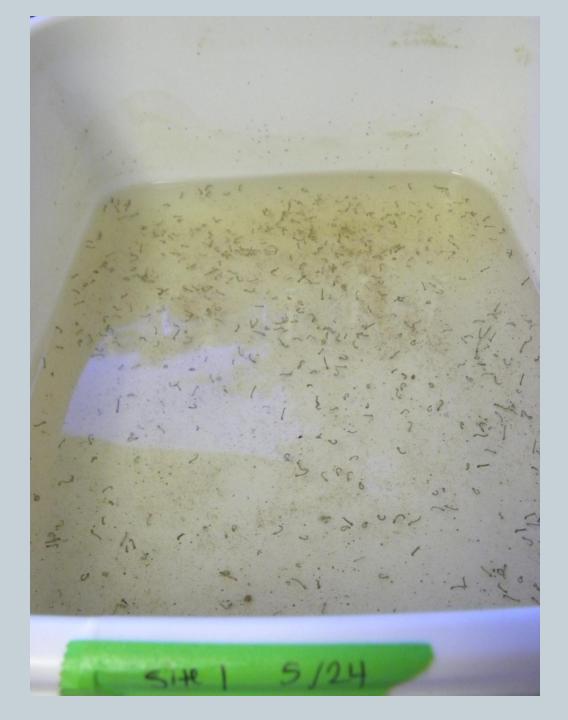
Hypothesis

- These mosquito species may differ in their relative contribution to the maintenance and transmission of LACV to humans
 - Differences in abundance at case sites
 - Differences in infection rates at case sites
 - Differences in blood meal composition at case sites
- Some traps are better than others for capturing specific species

Selection of Study Sites

- Case reports were obtained for all LACV cases from 2004-2009
- Cases were mapped and clusters identified
- Calls were made to households in the order of most recent and in our preferred counties (Knox and Claiborne)
- Six households were enrolled representing five cases

Egg Collections and Rearing


- Five standard oviposition cups were set at each site
- The eggs are removed each week and returned to the lab
- Eggs are reared to adults in a temperature controlled environmental chamber

Larval Collections

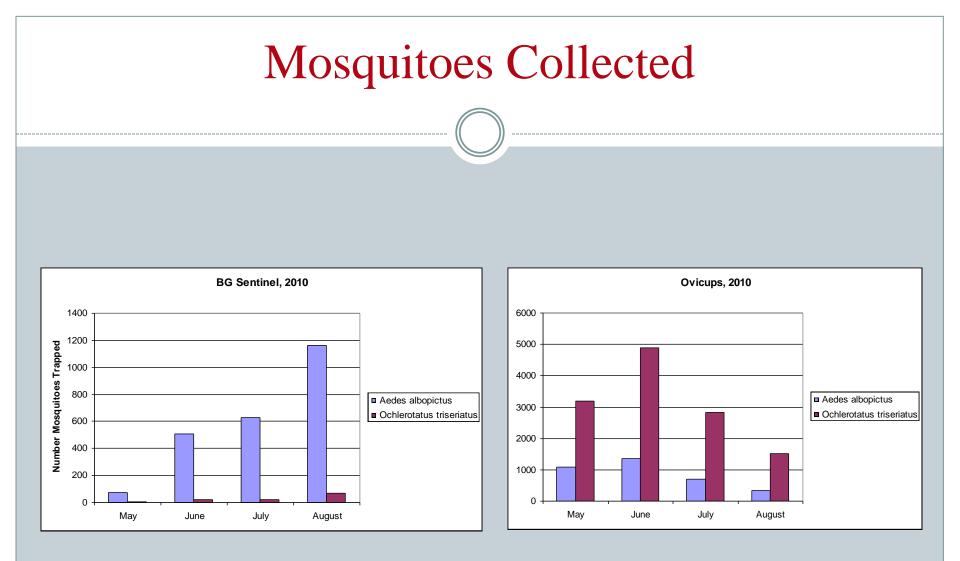
- All standing water on the field sites is examined every week for larvae/ pupae
- If present, a sample is collected and returned to the lab for rearing

Adult Collections

- Adults are collected in 2 ways: the BG Sentinel Trap and by aspirating
- The BG trap is set every week and run for approximately 24 hours
- Each site is aspirated, using either the Prokopack or the CDC Backpack Aspirator, for 20-40 minutes 1 to 4 days a week
- Adults are transported back to the lab on dry ice

Identification and Storage

- Adults are identified, sorted and numbered using a compound microscope and a chill table
- They are separated into pools of ≤ 23 mosquitoes by site, date, species and sex
- Stored in a -80 C chamber



RNA Extraction and Viral Testing

- Mosquito pools are homogenized in cell culture media
- RNA is extracted using QIAamp Mini RNA Extraction Kit or Biogents Robot
- RT- PCR is run using the protocol from Kuno et al. 1996
- The primers screen for 24 different viruses in the Bunyamwera/ California groups, including JC
- Some samples have also been tested using cell culture

Species per trap

Trap	Species	# mosquitoes	
Prokopack	Oc. triseriatus	36	
	Ae. albopictus	276	
	Oc. japonicus	0	
BG trap	Oc. triseriatus	321	
	Ae. albopictus	2374	
	Oc. japonicus	94	
Ovitrap	Oc. triseriatus	12400	
	Ae. albopictus	3485	
	Oc. japonicus	1306	
Larval collections	Oc. triseriatus	320	
	Ae. albopictus	183	
	Oc. japonicus	208	

Infected Ochlerotatus triseriatus (ovicups)

Date	Site	Gender	# Pools
6/9/2010	1	Μ	6
6/9/2010	1	F	4
6/22/10	5	Μ	2
6/22/10	5	F	2
7/12/10	6	М	2
7/19/10	1	Μ	1
7/19/10	2	F	3
7/19/10	3	Μ	3
7/19/10	5	М	2
8/9/10	5	Μ	2
8/9/10	6	F	2
8/19/10	3	F	8
8/19/10	5	М	2

Other LACV Infected Mosquitoes

Species	Gender	Site	#/pool	Date
Ochlerotatus japonicus	F	6	20	5/19/2010
Aedes albopictus	F	1	3	5/24/2010
Aedes albopictus	М	3	13	6/1/2010
Aedes albopictus	F	5	18	7/7/2010
Aedes albopictus	М	6	9	7/12/2010
Aedes albopictus	М	1	5	7/19/2010
Aedes albopictus	М	3	8	7/19/2010
Aedes albopictus	F	1	7	7/27/2010
Aedes albopictus	F	5	18	8/9/2010
Aedes albopictus	М	5	17	8/9/2010

Bloodmeal

• What are they eating?

- Samples:15 Aedes albopictus, 2 Ochlerotatus triseriatus, 1 Ochlerotatus japonicus
- Tested for mammalian and avian bloodmeals

Hypothesis

- These mosquito species may differ in their relative contribution to the maintenance and transmission of LACV to humans
 - Differences in abundance at case sites
 - × Trap dependent, Oc. triseriatus > Ae. abopictus > Oc. japonicus
 - Differences in infection rates at case sites
 - × 11 LACV ID events for Oc. triseriatus and 8 for Ae. albopictus
 - × 1 LACV ID event for Oc. japonicus
 - Differences in blood meal composition at case sites
 - Testing pending
- Some traps are better than others for capturing specific species
 - *Oc. triseriatus* = Ovicups
 - Ae. albopictus = Ovicups/BG
 - Oc. japonicus = Ovicups

Conclusions

- 1st ID of LACV in Oc. triseriatus in TN
- 1st ID of LACV in Oc. japanicus in U.S.
- 2nd ID of LACV in Ae. albopictus in TN (3rd in U.S.)
- For surveillance
 - BG may be useful for Ae. albopictus
 - o Ovicups for Oc. triseriatus and Oc. japonicus
- Prokopack good for bloodmeal collections in Ae. albopictus
- Larval collections representative of populations
- PCR more sensitive than cell culture assays

Acknowledgements

TDH

- Katie Westby
- Melissa Heim
- Erin Westby
- Miranda Chan
- Charissa Fritzen
- Junjun Huang

University of Tennssee

- Dave Paulson
- Dr. Carl Jones

The families in east TN

Questions?

