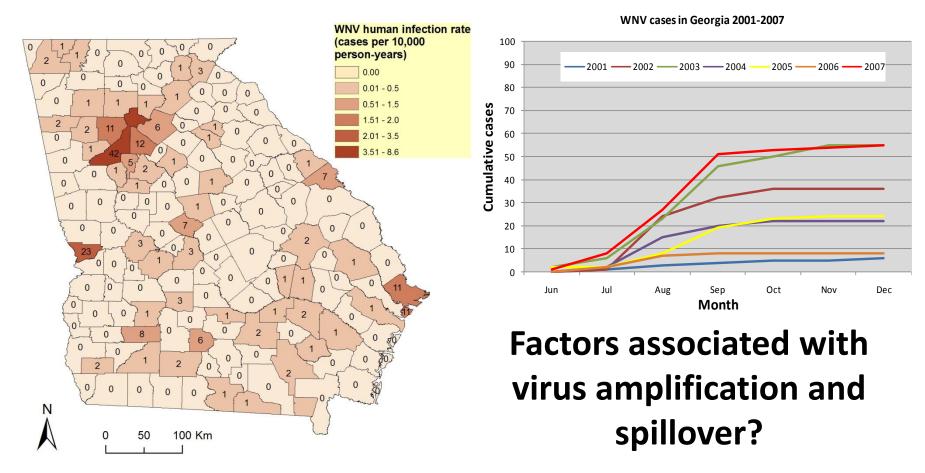
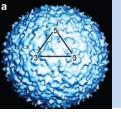

West Nile Virus and Combined Sewer Overflow streams

Gonzalo M. Vazquez-Prokopec

Emory University, Atlanta, GA; Fogarty International Center-NIH, Bethesda, MD <u>gmvazqu@emory.edu</u>

October 20, 2011 34th GMCA meeting



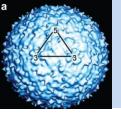

WNV in Georgia

Human cases

Most of GA human cases in metropolitan Atlanta, Columbus and Savannah.

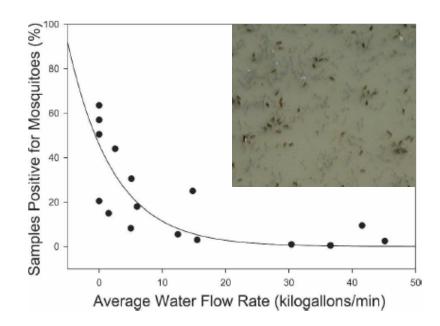
WNV in Georgia

Mosquitoes

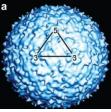

- *Culex quinquefasciatus* the most important Vector. Found in >84% of WNV+ tested pools.
- Common urban habitats for Cx quinquefasciatus:
 - * unmanaged residential pools and containers
 - * catch basins
 - * Combined Sewer Systems (CSS)

	Mosquito :	Surveillance (po	sitive pools)						
		14-Sep-07							
		EEE*	0						
	2007	Hart Park	0						
	2007	Flanders	93						
		WNV*	64						
		5-Sep-06							
		EEE*	0						
	2006	Flanders	24						
		WNV*	51						
		Highlands J	0						
		6-Sep-05							
		EEE*	8						
	2005	Flanders	100						
		WNV*	31						
		Highlands J	6						
	8-Sep-04								
	2004	EEE*	2						
		Flanders	56						
¥.		WNV*	100						
		Highlands J	0						

Source: R. Kelly



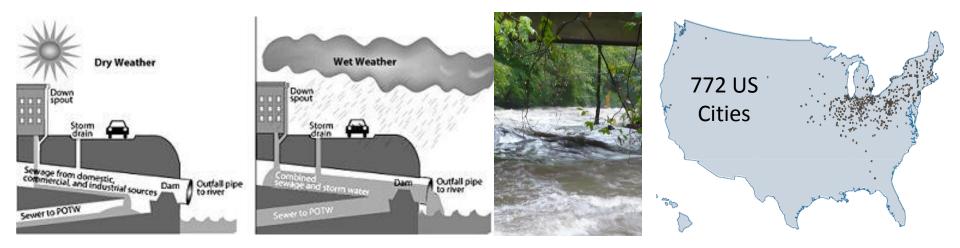
CSOs and Mosquitoes


Am. J. Trop. Med. Hyg., 77(3), 2007, pp. 478-484 Copyright © 2007 by The American Society of Tropical Medicine and Hygiene

Combined Sewage Overflows (CSO) Are Major Urban Breeding Sites for Culex quinquefasciatus in Atlanta, Georgia

Lisa M. Calhoun, Melissa Avery, LeeAnn Jones, Karina Gunarto, Raymond King, Jacquelin Roberts, and Thomas R. Burkot* Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia

Does the high mosquito productivity translates in a higher WNV transmission risk?

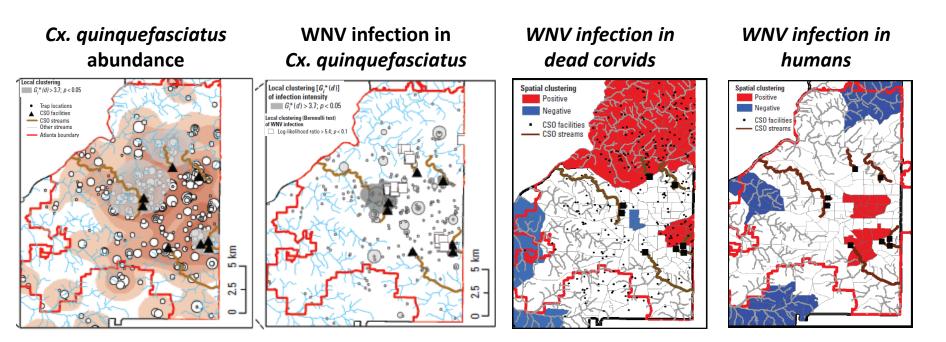


Combined Sewer Systems

Designed to carry both sewage and storm water.

When flow exceeds the maximum capacity of the sewer systems, it <u>overflows</u> directly into bodies of water with minor treatment.

Atlanta: 7 CSO facilities located in close proximity to residential, commercial and recreational sites.



OPEN & ACCESS

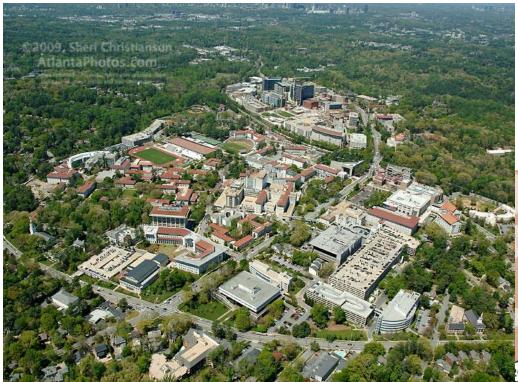
The Risk of West Nile Virus Infection Is Associated with Combined Sewer Overflow Streams in Urban Atlanta, Georgia, USA

Gonzalo M. Vazquez-Prokopec,¹ Jodi L. Vanden Eng,² Rosmarie Kelly,³ Daniel G. Mead,⁴ Priti Kolhe,⁵ James Howgate,⁵ Uriel Kitron,^{1,6} and Thomas R. Burkot²

¹Emory University, Atlanta, Georgia, USA; ²Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ³Georgia Division of Public Health, Atlanta, Georgia, USA; ⁴University of Georgia, Athens, Georgia, USA; ⁵Fulton County Department of Health and Wellness, Atlanta, Georgia, USA; ⁶Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA

WNV infection in mosquitoes, birds and humans clustered in close proximity to CSO streams.

Risk factors of WNV infection


			<u> </u>	-		-									
	\frown				Residential use										
Response variab	e, Distance	Distance to	Tree cover	Mean tree	Low	Medium	High	Wetland	Forest	Barren land	Elevation				
model ^b	to CSO (m)	catch basin (m)	range (%)	cover (%)	(%)	(%)	(%)	(%)	(%)	(%)	(m)	Constant	AIC	∆AIC	ω ^c
WNV infection i	n <i>Cx. quinquefa</i> :	ciatus													
1	-6.9E-4*	—	_	_	_	_	_	_	_	_	_	-1.26*	406.2	0.0	0.559
2	-7.5E-4*	2.4E-4	_	_	_	_		_				-1.28*	407.83	1.63	0.247
3	_	—	0.04*	0.04	_	_		_				-3.70	408.8	2.6	0.152
4	—	—	_	_	1.40	-4.44	0.04	-3.33	3.33	22.19	-0.03	-1.88	412.15	5.95	0.029
5	-2.1E-5	1.3E-4	0.04	1.31	-1.23	1.55	6.51	6.95	-4.07	21.23	-0.01	-4.03	413.9	7.7	0.012
6		3.5E-4	_	_	_	_	_	_	_	_	_	-1.51*	419.67	13.47	0.001
$\Sigma \omega_i$	0.81	0.0	0.152	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				

Mosquitoes: Distance to CSO, followed by Tree cover range

					2000	U.S.	Census					
Response variable Mod	Mean distance el ^b to CSO (m)	Mean distance to catch basin (m)	Mean tree cover (%)	Mean elevation (m)	Percent houses 1950s–1960s		ledian household come (U.S. dollars)	No. dead corvids	Constant	AIC	ΔAIC	$\omega_l^{\mathcal{L}}$
Human WNV inc	idence											
1	-6E-5**	_	-0.0018	—	0.0276*		-1E-5*	-0.0362	3.60*	309.0	0.0	0.817
2	-6E-5**	5E5	-0.0012	-0.0018	0.0287*		-2E-5*	-0.032	4.13*	313.1	4.1	0.105
3	8E5*	3E5	_	_	_		_	-0.117*	2.65*	314.8	5.8	0.04
4	—	_	_	_	0.0381*		-2E-5*		3.58*	316.8	7.8	0.02
5	—	_	-0.020*	-0.0035	_		_		3.75*	316.9	7.9	0.02
$\Sigma \omega_i$	0.97	0.0	0.02	0.0	0.94		0.92	0.04				
WNV-positive co	rvid death ratio	(- 7						
1	-6E-4*	_	0.194*	—	0.1095		1.0E-5*		4.26*	707.0	0	0.913
2	-6E-4*	2E5	0.215*	-0.0159	0.1023		-6.0E-5		10.46*	711.7	4.7	0.09
3	—	_	_	_	0.186*		1.4E4*		1.19	728.2	21.2	0.00
4	—	—	0.172*	-0.0017	_		_	_	4.83	728.4	21.4	0.00
5	3E4	-1E-5	_	—	_			_	11.61*	739.9	32.9	0.00
$\Sigma \omega_i$	1.0	0.0	1.0	0.0	0.0		0.91					

Humans: Distance to CSO and housing age, followed by median income. Birds: Distance to CSO and mean tree cover, followed by Median income.

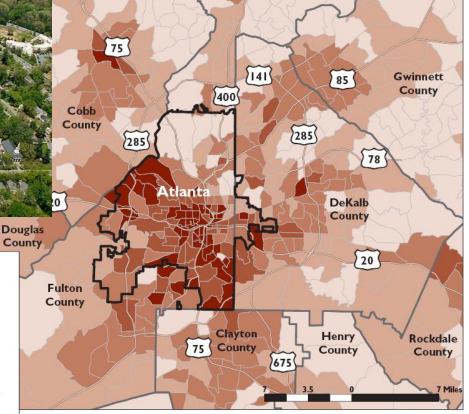
Urban context of WNV transmission

Atlanta

Boundary

Share of Population

10 to 20%


20 to 30%

Atlanta MSA Counties

< 5% 5 to 10%

Atlanta is an urban woodland.

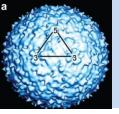
Share of persons living in poverty, 2000

With contrasting socio-economics and high poverty rates

Observational, laboratory, and seminatural experiments

Peavine creek Non-CSO

CDC


The role of CSO in mosquito population dynamics.

Oviposition preference Fitness and behavior **Density dependence**

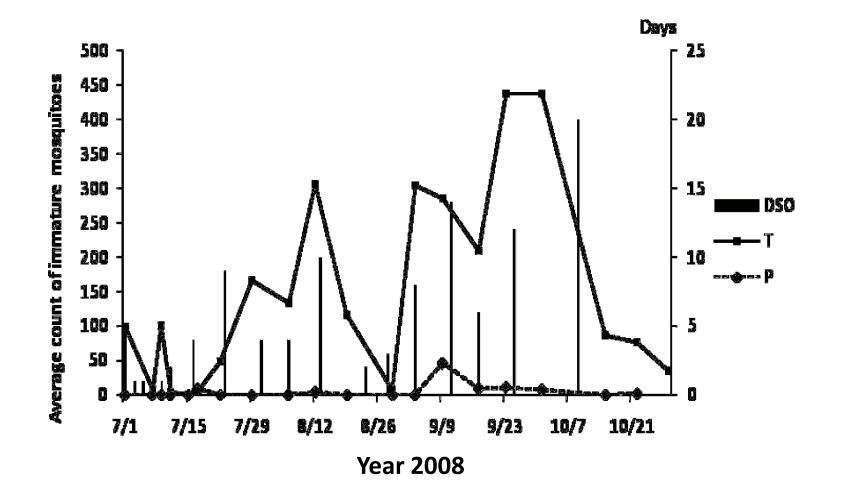
Tanyard creek CSO

Field research

Weekly mosquito monitoring by dipping (immatures), light traps, gravid traps and Prokopack aspirators (adults).

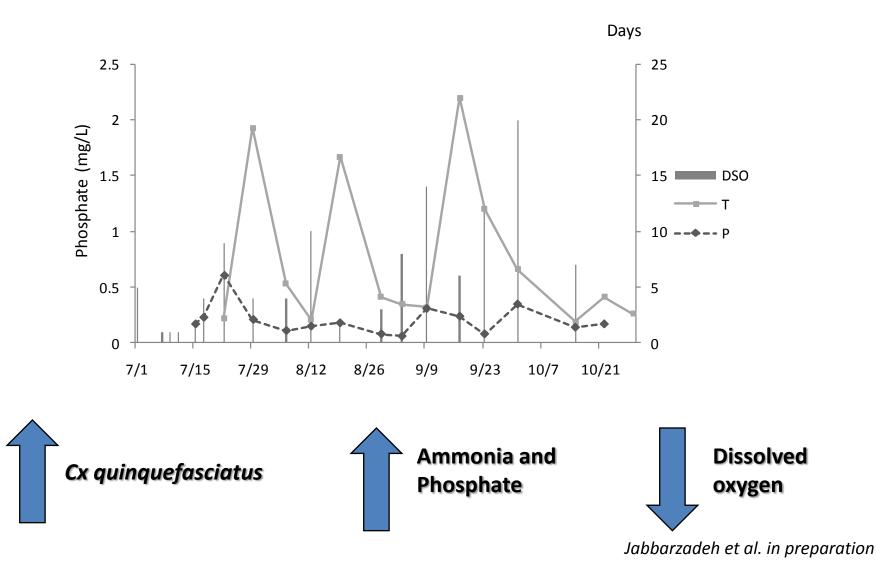
Weekly evaluation of water quality (Dissolved Oxygen, Ph, Temperature, Chlorine, Ammonia, Nitrates, Phosphates, Fecal coliforms and *E. coli*).

WNV and blood meal analysis of adult mosquitoes at UGA (Mead's Lab).


Tanyard Creek WARNING DO NOT PLAY, SWIM OR FISH IN CREEK

0

This is an urban creek and is subject to sewage overflows and runoff contaminants. To report foul odor or unusual discoloration: Call 404-659-6757 To find out how you can help local governments clean up & protect urban creeks:

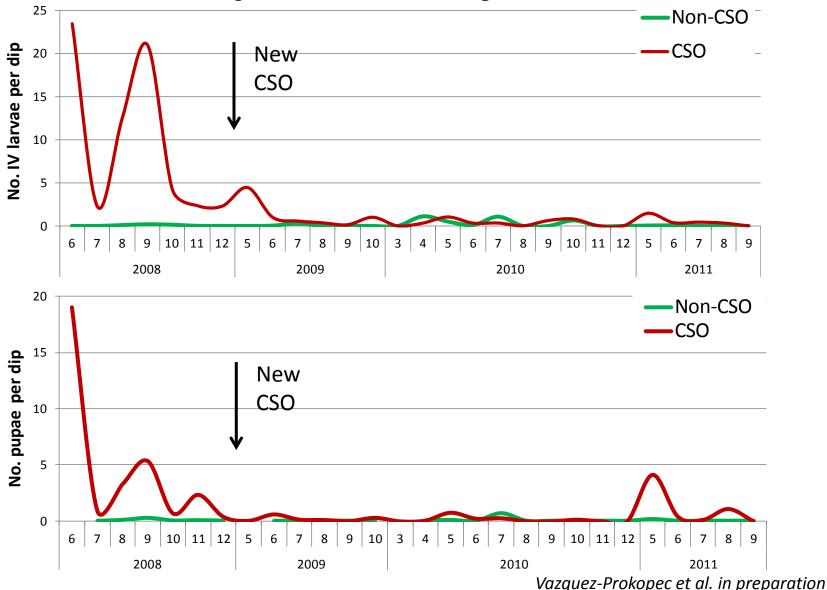

Call 404-330-6980

Monitoring CSO (T) and non-CSO (P) streams

Jabbarzadeh et al. in preparation

Water quality and vector productivity

New CSO and wastewater management: 2008 - present


- New tunnels to divert water to treatment facilities
- Large reservoirs for temporary water storage
- Goals:
 - Separate CSO from runoff waters
 - Delay CSO events.

Impacts on Cx. quinquefasciatus population dynamics?

Temporal trends in mosquito productivity

Urbanization and WNV

- CSO increase nitrogen in natural streams
- Reduces stream diversity (less predators)
- Increases bacterial counts
- Increases Culex sp. mosquito abundance.
- Abundant bird populations in riparian forests.
- Susceptible human population
- <u>Perfect for WNV amplification & spillover</u>.
- Changes in wastewater management had a negative impact on mosquito productivity
 Where is WNV now amplified?

Thank you!

Collaborators

Rosmarie Kelly – Georgia Division of Public Health

Thomas Burkot - CDC

Gonzalo Vazquez-Prokopec, Luis Chaves, Rebecca Levine, Nelle

Couret, Uriel Kitron – Emory

Danny Mead – UGA

Contributors

John Shimmin (Atlanta Watershed Management) Melanie Downey and Elmer Gray (UGA) Abdu Bouzid, Brandon Bedford, Gregory Decker, Jane Dennis-King, Will Galvin, Carrie Keogh, An Nguyen, Andy Nguyen, Michael Page Alexandra Van Nostrand, Amanda Jo Williams, Helen Hill, Evelin Grijalva,, Kevin Lanza, Miho Yoshioka, Parisa Nourani, Gaothami Rao (Emory) Jody Vanden Eng – CDC Daniel Kitron – Druid Hills High School

Funders

Emory University – Department of Environmental Studies internal support. CDC – Division of Parasitic Diseases/Entomology Branch.