GMCA 2014 Annual Meeting

Session 1: Wednesday Oct 15

- I. Gearing Up for Chikungunya in Georgia Amanda Feldpausch
 - A. Mosquito borne viral disease
 - 1. Joint pain
 - 2. Fever
 - B. History
 - 1. 1950 Tanzania
 - 2. 2013 Caribbean
 - 3. 2014 Florida
 - C. Symptoms
 - 1. Most people show symptoms
 - 2. Incubation period
 - a) 3-7 days
 - b) Range 1-12 days
 - 3. Variety of symptoms
 - 4. Joint pain
 - D. Treatment
 - 1. Supportive care
 - 2. NSAIDS
 - 3. Acute symptoms resolve in 7-10 days
 - 4. Persistent and recurring joint pain
 - 5. Mortality is rare
 - E. Prevention
 - 1. Reduce mosquito exposure
 - 2. Viremic first 7-10 days of illness (Onset of symptoms)
 - 3. Avoid places where CHIK occurs
 - F. Concerns
 - 1. People are the reservoir
 - 2. Outbreaks can grow quickly
 - 3. We have vectors
 - G. What we saw
 - 1. June 2014
 - a) Patient 1
 - (1) Advised patient
 - (2) Asked to do mosquito surveillance refused
 - b) Mission group 1
 - (1) Father called
 - (2) All affected were under 18
 - (3) Father did not want to give contact info
 - c) Mission group 2
 - (1) TN group Hospitalized here
 - (2) Leader not willing to give contact info
 - 2. Response
 - a) Educate Groups
 - b) Test if clinically compatible
 - c) Get info out to public
 - d) Work on getting contact info from groups

- 3. CDC changed testing recommendations outreach to commercial labs
- H. Improving Epi response
 - 1. Guidance document
 - 2. Mosquito control outreach
 - 3. Media talking points
 - 4. Notifiable status
- I. Surveillance in Georgia
 - 1. Passive
 - 2. Districts investigate
 - 3. Suspect case address shared with mosquito control with permission
- J. Cases
 - 1. 21 cases so far
 - 2. June and July highest
- K. Challenges
 - 1. Resources
 - a) Testing
 - b) Time
 - 2. Delay in reporting
 - 3. Lack of physician education developed a physician guide
 - 4. Refusal of mosquito surveillance
- L. Strengths
 - 1. Rapid guidance document development
 - 2. Amazing district staff
 - 3. Mosquito control
- II. Field Application of Intensity Bottle Bioassay Seth Irish
 - A. Developed by Bill Brogdon
 - B. Insecticide resistance
 - 1. Heritable change
 - 2. Causes
 - a) Metabolic pesticide breakdown
 - b) Target site mutation
 - (1) Genetic change
 - (2) Pesticide not as effective
 - c) Other
 - (1) Cuticle thickening
 - (2) Behavior change
 - 3. Resistance monitoring is importants
 - a) Genotypic
 - (1) Genotyping
 - (2) Biochemical analysis
 - (3) Field data
 - b) Phenotypic
 - (1) Bioassay
 - (2) Topical application
 - (3) Timed exposure (Bottle bioassay)
 - C. Bottle bioassay
 - 1. Glass 250 ml bottle
 - a) Insecticide in acetone to coat bottle surfaces
 - b) 1 control bottle just acetone

- 2. Allow bottle to dry
- 3. Put mosquitoes in (20-25)
 - a) Close bottle
 - b) Observe over time
- D. Specific dose depending on
 - 1. Mosquito species
 - 2. Pesticide
- E. Diagnostic time is insecticide specific
- F. Synergists help pesticide to work better
 - 1. Expose mosquitoes to synergist for an hour
 - 2. Test against pesticide
 - 3. Helps determine what causes resistance
- G. What does resistance mean?
 - 1. Control failure? Depends on the circumstances
 - a) Sometimes
 - b) Sometimes not
- H. Intensity assay
 - 1. Diagnostic dose
 - a) 1x
 - b) 2x
 - c) 5x
 - d) 10x
 - 2. Looking for operationally significant resistance
- III. The Good, the Bad, and Why am I Doing This, Again? Oscar Flite
 - A. The good
 - 1. Equipment was supplied
 - 2. Access to expertise
 - 3. Partially funded
 - 4. Still alive
 - B. The bad
 - 1. Partially funded
 - 2. Limited research beyond surveillance
 - C. So why keep doing this?
 - 1. Cool research opportunities
 - a) Mosquito fish in pools
 - b) Mosquito ecology
 - 2. Sites
 - a) 7 in northern part of county
 - b) 7 in southern part of county
 - c) 1 in constructed wetlands
 - 3. Methods
 - a) Monitor each area every other week
 - b) Monitor constructed Wetland site weekly
 - c) CDC light trap and gravid trap with hay infusion used at each site
 - 4. Data
 - a) Constructed wetland (Primarily in light trap)
 - (1) Cx salinarius
 - (2) An crucians complex
 - (3) Cq perturbans

- b) Problem sites wetland species
 - (1) Alabama Rd
 - (a) Cx salinarius
 - (b) Ae albopictus
 - (c) Cx erraticus
 - (2) Chester Ave
 - (a) Cq perturbans
 - (b) Cx salinarius
 - (3) Apple Valley
 - (a) Culex salinarius
 - (b) Cq perturbans
- c) Periodicity of predominant species
 - (1) An crucians came off early than Cx salinarius
 - (2) Weather has an effect
 - (3) Travel time of runoff to constructed wetland is ~4 days
- D. WNV
 - 1. Cluster to northwest of wetland
 - 2. Around Augusta National Golf Course
 - 3. Hope to do virus testing next year
- IV. Formulations for Mosquito Control Products Mickey Taylor
 - A. PSEP website (UGA)
 - B. Pesticide
 - 1. Active ingredient
 - 2. Inert ingredients
 - a) Make product easier to handle
 - b) Increase pesticide safety
 - c) Make product work better
 - (1) Increased effectiveness
 - (2) Increased penetration
 - d) Make mixing and measuring easier
 - C. Types of formulations
 - 1. Solution
 - a) Dissolve
 - b) Liquid or dry
 - 2. Suspension
 - a) Dry carrier mixed with emulsion
 - b) Active ingredient high %
 - 3. Emulsion
 - a) Ai dissolved in oil
 - b) Mixed with an emulsifier
 - c) Keep mixed
 - D. Formulations
 - 1. Liquid formulations
 - a) ULV
 - (1) Almost 100% ai
 - (2) Applied as thermal or cold fog
 - (3) High drift potential
 - (4) Specialized equipment
 - (5) Application timing

- (a) Inversion layer
- (b) Low wind speed
- (6) Respiratory protection
- (7) Advantages
 - (a) Easy to handle
 - (b) Little to no agitation
 - (c) Easy on equipment
 - (d) No residue
- (8) Disadvantages
 - (a) Drift
 - (b) Regular calibration is critical
- b) Emulsifiable concentrate
 - (1) Ai dissolved in a petroleum-based solvent with an emulsifier added
 - (2) Advantages similar to ULV
 - (3) Disadvantages
 - (a) Can be phytotoxic
 - (b) Flammable
 - (c) Extra PPE needed
 - (d) Easily absorbed by skin
- c) Flowables
 - (1) Wettable premixed powder
 - (2) Advantages
 - (a) Less absorption
 - (b) No phytotoxicity
 - (c) Easy to mix and measure
 - (3) Disadvantages
 - (a) Hard on equipment
 - (b) Can leave a residue
- 2. Dry formulations
 - a) Wettable powder
 - (1) Requires constant agitation to keep suspension
 - (a) Difficult to mix
 - (b) Can be abrasive
 - (2) Inhalation hazard
 - b) Dry flowable / water-dispersive powder
 - c) Soluble powder
- 3. Other
 - a) Micro encapsulated
 - (1) High ai
 - (2) Encased and suspended
 - (3) Gradual release
 - b) Water soluble packet
 - c) Briquets / soluble granules
- E. Advantages and disadvantages
 - 1. Equipment considerations
 - 2. Safe application
 - 3. Target pest
 - 4. Risk to non-targets or environment
 - 5. Cost

F. Adjuvant

- 1. Types
 - a) Surfactant
 - (1) Spreader
 - (2) Wetting agent
 - (3) Emulsifier
 - (4) Sticker
 - b) Buffer
 - c) Dye
 - d) Anti foaming agent
 - e) Etc
- 2. Choosing the correct type
 - a) READ THE LABEL
 - b) Do not use industrial type products
 - c) Adjuvant must be designed to work with product
 - d) Test in small batch first
 - e) May already be part of the inert ingredients

V. Industry Spotlight

- A. UNIVAR
- B. AMVAC
- VI. Chatham County's Sentinel Chicken Program Bobby Moulis
 - A. EEE surveillance
 - B. Chickens are deployed to areas where Arbovirus activity is likely
 - 1. Most programs use coops set up in sites and left all season
 - 2. Chatham County
 - a) Chickens housed in a mosquito free coop
 - b) Start with baby chicks In January
 - c) Transfer to individual cages
 - d) Only use hens
 - e) Each bird is tagged with a wing tag
 - f) Each cage is marked

C. Sites

- 1. Western part of county
- 2. More rural areas
 - a) Associated with rivers
 - b) Hardwood swamp area
- 3. 6 sites
- 4. CDC light traps at sites
- 5. Chicken cages are installed 12 feet off the ground

D. Cages

- 1. Bucket enclosed with mesh at sides
- 2. Exit trap at top
 - a) Mosquito test data are quicker than bird data
 - b) 1 week as opposed to 4 weeks
- 3. Alternate black and white buckets

E. Testing

- 1. Bled 2 weeks after deployment
- 2. Blood shipped to Tifton for testing
- 3. Positives are rebled for confirmation

- F. Mosquito side
 - 1. Difficult to catch
 - a) Culiseta melanura not easy to find
 - b) Culex erraticus may also be involved
 - 2. Easier to find EEE in chickens
- VII. What's New at Richmond County Mosquito Control Fred Koehle
 - A. Complain calls
 - 1. Use to be done off answering machine
 - 2. Switched to 311 service
 - a) Look up info on map
 - b) Send email to program
 - c) Split work orders to additional agency where appropriate
 - B. Overgrown retention pond / drainage ditch areas
 - 1. Hard to find effective methods
 - 2. GOATS
 - a) Low cost
 - b) Quiet
 - c) Accepted by citizens
 - d) Do have to provide basic care
 - (1) Water
 - (2) Shelter
 - (3) Feed occasionally
 - e) Will be starting a breeding program
 - f) Animal services is taking care of goats
 - g) Takes about 60 days to get grass "mowed"
- VIII. Preliminary Data on Investigations of Residential Misting Treatment for Mosquitoes Tiffany Nguyen
 - A. Mosquito surveillance (UGA)
 - 1. Sampling methods
 - a) CDC light traps with and without CO2
 - b) Gravid traps with hay infusion
 - c) Insect sweep nets
 - d) Vacuum sampling
 - 2. Species
 - a) Oc japonicus
 - b) Ae albopictus
 - c) Ae vexans
 - d) Cx restuans
 - e) Cx quinquefasciatus
 - f) Ps ferox
 - g) Anopheles
 - B. Barrier spray
 - 1. Hedgerow areas
 - a) Vacuum sampled at 2 week intervals after treatment
 - b) Bioassay cage studies
 - 2. Neighborhood assessment
 - a) Pre and post treatment vacuum sampling
 - b) Mixed results
 - c) Most mosquitoes were Ae albopictus

- 3. Shadowing Pest Control Companies
 - a) Company A
 - (1) 1 tech
 - (2) 15 treatment homes
 - (3) 9 control homes
 - b) Company B
 - (1) 2 techs
 - (2) ...
- C. Summary
 - 1. Impact for at least 2 weeks
 - 2. Breeding sites may be a problem
 - 3. Vacuuming is useful for collecting species to ID
 - 4. Residual efficacy
 - 5. Many houses being treated really do not have a mosquito problem
- D. More data will be discussed at GMCA 2015

Session 2: Thursday, Oct 16 MORNING

- I. God in His Wisdom Made the Fly, and Then Forgot to Tell Us Why Nancy Hinkle
 - A. Background
 - 1. Over 16000 fly species in North America
 - 2. Original recyclers, biodegraders, and nutrient capturers
 - B. Some Important species
 - 1. Crane fly
 - 2. Chironomid (Non-biting midge)
 - 3. New world screwworm fly is eradicated in North America
 - a) Huge impact on livestock
 - b) One reason why whitetail deer were scarce
 - 4. Eye gnats
 - 5. House fly
 - 6. Blood feeders
 - a) Stable fly these bite
 - b) Horn fly
 - c) Black fly
 - d) Culicoides (Ceratopogonidae)
 - (1) Biting midge
 - (2) No-see-um
 - (3) Punkie
 - e) Tabanidae
 - (1) Horse fly
 - (2) Deer fly
 - (3) Green head fly
 - (4) Yellow or dog fly
 - (5) Louse fly
 - 7. Blow fly calliphorid
 - 8. Love bugs (Bibionidae)
 - a) Males have smaller heads
 - b) Usually seen attached and mating, hence the common name
 - 9. Indoor pests
 - a) Fruit fly/pomace fly

- b) Moth fly/drain fly (Psycodid)
 - (1) Bleach does not work
 - (2) Hot water doesn't work
 - (3) Larvae are in gelatinous layer
- 10. Phorids humpback fly
- 11. Dark wing Fungus gnat
 - a) Common in overwatered plants
 - b) Feed on fungus
 - c) Larvae are communal
- 12. Fungus gnat
- 13. Black soldier fly
- C. Things called flies that are not flies
 - 1. Stonefly
 - 2. Butterfly
 - 3. Dragonfly
 - 4. Etc
- II. Applying Pesticides by Air Scott Yackel
 - A. Use to be three counties with aerial programs
 - 1. Glynn
 - 2. Chatham
 - 3. Liberty
 - B. Now just Chatham
 - 1. Salt marsh
 - 2. Hardwood swamps
 - 3. Barrier islands
 - 4. Old storm drain system
 - C. IMM program
 - 1. Surveillance
 - a) Use helicopter to get tech to sites
 - b) Base control on data
 - 2. Physical water management
 - a) Source reduction
 - b) Fish pools
 - 3. Biological control
 - 4. Larvicide
 - a) Helicopter survey to determine target
 - b) Treat breeding areas with granular materials
 - c) Treat source reduction ditches with oil
 - 5. Adulticide
 - D. WNV
 - 1. Something changed in 2003
 - 2. What needed changing
 - a) Timing
 - b) Resistance
 - c) Targeting / equipment
 - (1) Truck
 - (a) Swath width
 - (b) Wind drift
 - (c) Product use

- (d) Efficiency and timing
- (2) Aerial
 - (a) More efficient and quicker use two aircraft at once
 - (b) Can use Naled
 - (c) Timing is just prior to sunset (based on surveillance)
 - (d) Product management
 - i) Use the drift to get product in place
 - ii) Elevation above ground is usually ~200-300 feet in helicopter
 - (e) Need to take into account human activity
- d) Set up an action plan based on surveillance numbers
- e) Set up system to use low ai per acre
 - (1) Economically beneficial (88 cents an acre)
 - (2) Less environmental impact
- f) Challenges
 - (1) Sports activity
 - (2) Weather
 - (a) Temperature
 - (b) Rain
 - (3) Budget for chemical
 - (4) Bee hives (>90 degrees bees sit outside)
- 3. Good community relationship
- E. Other helicopter/air tractor uses good community relationship
 - 1. Search and rescue
 - 2. Water rescue
 - 3. Resupply missions
 - 4. Aerial fire fighting
 - 5. Police work
- F. Helicopter is equipped with surveillance and search equipment
- III. The Eradication of the New World Screwworm Cochliomyia hominivorax Ian Brown
 - A. What is a screwworm?
 - 1. A fly that initiates primary obligate myiasis
 - a) Invades live invertebrates
 - b) First attach on host
 - c) Use feed on live host
 - 2. Powerful flier, fly up to 180 miles
 - 3. Calliphorid
 - 4. Red eyes
 - 5. Determined to be the problem in 1933
 - B. Screw, or larva
 - 1. Wood screw shaped
 - 2. Feeding hooks
 - 3. Body ringed with spines
 - 4. Sit perpendicularly in wound
 - C. Life cycle
 - 1. Eggs laid on edge of wound (5000+ eggs)
 - 2. Larvae hatch from egg and enter wound
 - 3. Feed on living tissue for 5-7 days
 - 4. Leave wound, drop off host, burrow into soil
 - 5. Pupate in soil

- 6. Adults
 - a) Males mate aggressively
 - b) Females only mate once
- D. Pathology
 - 1. All wounds targeted
 - 2. Warm-blooded vertebrates targeted
 - 3. Old wounds are colonized multiple times
 - 4. Other flies became attracted to wound
 - 5. Usually ended in death of host
- E. Eradication
 - 1. USDA
 - 2. 1930s
 - a) 1930s Knipling developed the sterile insect technique (SIT)
 - b) 1936 Bushland developed an in vivo technique for mass rearing
 - c) Figured out mating patterns
 - d) Determined species involved
 - 3. 1950s
 - a) Knipling and Bushland solved the problem of mass sterilization
 - b) Field trials
 - (1) Island off the coast of Florida issues with re infestation from mainland
 - (2) Curação flies eradicated in one year
 - 4. Eradication timeline
 - a) 1957 east of Orlando, 70% eradication
 - b) 1957-1958
 - (1) Severe winter pushed screwworm south
 - (2) Created a barrier zone
 - c) 1959 screwworm eradicated in southeast to Mississippi River
 - d) 1961 recruitment from areas with screwworm was problematic
 - e) 1962 southwest eradication program started
 - f) 1966 Indigenous screwworm eradicated from US
 - (1) Long barrier to maintain
 - (2) Cost was \$5 million per year
 - (3) This was only about 1/20th the cost of damage by screwworm fly
 - 5. 1970 setbacks
 - a) Weather was amenable to flies
 - b) Huge outbreak in the US in 1972
 - c) Worked on an agreement with Mexico to eradicate flies and set barrier at narrowest part, accomplished by 1984
 - d) Cost was 1.8 million per year
 - 6. 1980s
 - a) Moved barrier to narrow part of Mexico
 - b) No more U.S. outbreaks
 - 7. 1990s
 - a) Started eradication in Central America
 - 8. Program continues
- F. Critical steps
 - 1. Fly surveillance
 - 2. Livestock inspectors

- IV. Know Thy Skeeter: The Role of the Gut Microbiota in Mosquito Development Kerri Lynn Coon
 - A. Health depends on gut bacteria
 - 1. Axenic bacteria free gut
 - 2. Gnotobiotic colonized by known bacteria
 - B. Insects
 - 1. Often only one keystone bacteria species
 - 2. Mosquitoes
 - a) Studies on interaction and relationship to vector competence
 - b) Not much known about effect of bacteria on basic physiology
 - C. Research
 - 1. Develop axenic mosquito larvae
 - a) Bacteria come from female through egg shell
 - b) Bacteria picked up from water
 - c) Technique
 - (1) Sterilize egg shell
 - (2) Hatch in sterile water
 - d) Outcome
 - (1) Did not molt to second instar
 - (2) All died
 - (3) All species died
 - 2. Characterize gut bacteria
 - a) Technique
 - (1) Characterize microbial community of water and larvae
 - (2) Identify and culture
 - (3) Produce axenic larvae
 - (4) Add bacteria back to determine which are necessary for development
 - b) Outcome
 - (1) Mosquito gut harbors a relatively simple bacterial community
 - (2) This is similar but not the same as the water environment
 - (3) Most are aerobic
 - (4) 13 strains isolated Cook, KL et al, 2014, Molecular Ecology 23, 2727-2739.
 - (5) One replaced Non-specific bacteria strain allowed mosquitoes to molt
 - 3. What about field derived mosquitoes?
 - a) Species
 - (1) Aedes aegypti
 - (2) Aedes albopictus
 - (3) Cx quinquefasciatus
 - b) Same assays used
 - c) Same results
 - D. Bottom line
 - 1. Rescue of mosquito development requires colonization of larval gut by bacteria
 - 2. What mechanism underlies the mosquito-bacteria interaction?
 - a) Used E. coli collection with single gene mutations
 - b) If it doesn't allow the mosquito larvae to develop, then why?
 - c) Why do only certain bacteria colonize the gut?
 - d) What is the necessary component that bacteria bring to the table?
 - e) More work is being done
- V. Industry Spotlight

- A. AllPro Temephos will no longer be manufactured
- B. Central Life Sciences
- VI. Educational Resources for Mosquito Management Willie O Chance
 - A. Staying on top of the information
 - 1. Newsletter
 - 2. Pest Alerts
 - B. Extension agents
 - 1. 158 of 159 Georgia counties have an extension office
 - 2. Expertise varies
 - C. Website online alerts (http://blog.extension.uga.edu/pestcontrolalert/)
 - 1. Archive
 - 2. Search by keywords
 - 3. Register for email alerts
 - 4. Links To additional info
 - 5. Online training
 - a) Links to info
 - b) Webinars
 - c) Upcoming training
 - D. Emerging problems and issues
 - E. Regulatory changes
 - F. UGA services and publications
 - 1. Insect ID
 - 2. Research
 - 3. Control info
 - G. Georgia Dept of Ag
 - 1. License info gapestexam.com
 - 2. Training video is on the GMCA website
 - 3. Pesticide training and Safety
 - H. Mosquito ID
 - 1. GMCA
 - 2. AMCA
 - 3. ID classes
 - a) Florida classes
 - b) GDPH classes
 - I. Other newsletters
 - 1. Dideebycha GMCA newsletter
 - 2. Wing Beats

Session 3: Thursday, Oct 16 AFTERNOON

- I. Ants Dan Suiter
 - A. Not an ant!
 - 1. Velvet ants
 - a) Solitary parasitic wasp -
 - (1) Males have wings
 - (2) Females are wingless
 - b) Painful stinger
 - 2. Velvet ants parasitize the larvae of the sphecids
 - B. Ants
 - 1. Control issues

- a) Why does the problem exist
 - (1) Changes to environment
 - (2) Look for conducive conditions
- b) Baits
 - (1) Minimize non-target exposure
 - (2) Target specific
 - (3) Ants share food
- c) Spot treatments can be done to nest
- d) Last resort is broadcast
- 2. Specific pests
 - a) Number one pest in GA is the Argentine ant
 - (1) Colony can cover 5 acres
 - (a) Millions of ants in a colony
 - (b) Many queens
 - (c) Long forage trails
 - (2) Treatment of choice is Termidor
 - (a) Slow kill
 - (b) Ants move product
 - (3) Primarily found in south and central Georgia
 - (4) Also called a sugar ant
 - (5) Nest in mulch and leaf liter
 - (6) Drought and cold drive ants inside
 - (a) Will congregate under things
 - (b) Behavior and metabolism change
 - (c) Don't feed much so baits do not work well
 - b) Tawny Crazy ants
 - (1) Emerging as #1 pest
 - (a) First found in GA in Albany (Aug 2013)
 - (b) Aug 2014 Camden and Glynn counties
 - (2) Huge colonies
 - (3) Find piles of dead ants
 - (4) UGA wants reports of invasion
 - (5) Flourish in areas with junk piles
 - (6) Can short out electronics
 - c) Carpenter ants
 - (1) 2 species
 - (a) Black northern 2/3 of state
 - (b) Florida south of Savannah
 - (2) Very baitable
 - (3) Nest in large hardwood trees and under things
 - d) Mound ant (look like Florida Carpenter ant)
 - (1) Big aggressive ant
 - (2) Found in northeast Georgia
 - (3) Bait did not work well
 - (a) Are a lot of granular bait
 - (b) Didn't eat it dumping
 - e) Fire ants
 - (1) Don't disturb the mound, it changes ant behavior
 - (2) Granular bait used to treat area around the mound

- f) Acrobat ants
- g) Number of pest ant species 16
- II. Calibration Jason Conrad
 - A. Requirements are different for different applications
 - B. Standards
 - 1. Found on label
 - 2. Equipment specific
 - C. Vendor should be able to help with calibration
 - D. READ THE LABEL
 - E. Specific applications
 - 1. Barrier spray
 - a) Size of area
 - b) Label rate
 - c) Need to practice your application method before spraying chemical
 - d) Based on walking speed
 - e) Does not require droplet calibration
 - 2. Adulticide
 - a) Flow rate
 - (1) Calibrate pump to insure proper flow rate
 - (2) Disconnect line from nozzle
 - (3) Need to be sure machine is at the desired operating pressure
 - (4) Collect for one minute into a graduated cylinder
 - (5) Adjust as needed
 - b) Droplets
 - (1) Adjust flow rate or RPM
 - (2) Droplet size is on label
 - (3) Droplet size affects ability to kill mosquitoes
 - (a) Better spread of product
 - (b) Product stay aloft longer based on size
 - (c) Off target drift can occur is droplets are too small
 - (4) Measuring droplet size
 - (a) DC-III
 - i) Wand placed in spray for 30 seconds
 - ii) Computer provides droplet count and average size
 - (1) Date and time stamp
 - (2) Product
 - (3) Flow rate
 - (4) Droplet size (median diameter)
 - (b) Need to have vendor calibrate the machine yearly
 - 3. ALL MACHINES MUST BE CALIBRATED FOR FLOW RATE, BUT NOT ALL NEED TO BE DROPLET SIZED depends on application
 - F. Trouble shooting
 - 1. Loose fitting and connections put air in the line
 - 2. Work backwards to find problem
- III. Confessions of a Serial Association President Roxanne Connelly
 - A. The associations
 - 1. FMCA
 - a) 2008 2012
 - b) VP to past president

- 2. AMCA
 - a) 2011 2015
 - b) VP to past president
- B. FMCA a time for change
 - 1. 12 member Board
 - 2. Finances were problematic
 - a) Crime executive director was embezzling money
 - (1) Had been happening long term (\$250,000 proved)
 - (2) Discovered around 2010
 - (3) Turned over to state attorney
 - (4) Finalized April 2014
 - (5) Proved embezzled money is being returned
 - b) Need to have more than one person looking at bank statements
 - c) Board members have to not be afraid to ask questions
 - 3. Moved towards electronic
 - a) Website
 - b) Online registrations
- C. AMCA looking to the future
 - 1. Executive director hired through Association Headquarters
 - a) Paid business
 - b) Take a lot of the basic financial burden off Board
 - c) Need to be sure that there isn't a volunteer to do the job
 - 2. Young professionals
 - 3. Worry about lack of young people in mosquito control generational differences
 - 4. 15 member Board
 - a) Regional directors don't always represent region
 - b) Looking to reduce size
- D. Life after being president
 - 1. Dodd short courses
 - 2. Research
 - a) Barrier sprays
 - (1) Using several types of traps
 - (2) Landing rates
 - b) Dibrom non-target effects
 - (1) Using different kinds of traps
 - (2) Collected different kinds of insects
 - (a) ID to species
 - (b) Haven't decided on target species yet
 - c) Redo Darsie's key to be more similar to Nathan Burkett-Cadena's key
 - 3. Chikungunya
 - a) Workshop in June
 - (1) 5 breakout groups
 - (2) Questions
 - (a) Tools had
 - (b) Tools needed
 - (c) Barriers to control and communication
 - (3) Whitepaper will be coming out
 - b) 11 locally-required cases of CHIK

- 4. Florida Resident's Guide to Mosquito Control http://edis.ifas.ufl.edu/pdffiles/IN/IN104500.pdf
- IV. An overview of Martin County Mosquito Control Gene Lemire
 - A. Program
 - 1. Personnel
 - a) 7 FT employees
 - b) 2 PT employees
 - 2. Primary pest
 - a) Current primary pest mosquito is Aedes aegypti
 - b) Use to be Aedes albopictus
 - B. Procedures
 - 1. Use a lot of products with long term control
 - 2. Follow up calls with inspection
 - 3. Surveillance
 - a) Larval dippers
 - b) Mosquito magnet
 - (1) 20 sites
 - (a) Leave machine out
 - (b) Tank works for about 21 days
 - (2) Lots of citizen acceptance
 - c) Sentinel chickens
 - 4. Things other than mosquitoes
 - a) Tire pickup in winter
 - b) Hymenoptera control
 - (1) African bee control on county property
 - (2) Yellow jackets
 - c) Weed control
 - (1) Right of Way control (Motorized tricycle)
 - (2) Aquatic weed control
 - 5. Mosquito control
 - a) Barrier spray
 - b) Larvicide ditches
 - c) Harborage spraying
 - d) Thermal fogging
 - e) Backpack ULV
 - f) Truck-mounted ULV
 - 6. Impoundments
 - a) Put out aerators
 - b) Reduce salt marsh mosquito problem
 - C. Improving a vector control program
 - 1. Educate
 - a) Make the environment conducive for success
 - b) Keep people informed
 - c) Get people involved
 - 2. Work smarter not harder
 - a) Keep learning
 - b) Don't be afraid of failure
- V. Preliminary Observations on the Ovipositing of Container Breeding Mosquitoes in West Central Georgia (Or a quest for *Aedes aegypti*) Mike Womack

- A. last collected Aedes aegypti in Central GA in 1993
- B. Methods
 - 1. Sampling
 - a) Spring 2013 (Feb-April)
 - b) Fall 2013 (Aug-Oct)
 - 2. Ovitraps placed at student homes
 - a) Set for 7 days
 - b) Collect substrate
 - c) Dump water
 - d) Refill and restart
 - 3. Set ovitraps at new sites Aug-present 2014
 - 4. Eggs hatched and reared to 4th instar
- C. Results
 - 1. Spring 2013
 - a) 94 samples
 - b) Egg diapause occurs need additional light to hatch
 - 2. Fall 2013
 - a) 89 samples
 - b) Mosquitoes
 - (1) Aedes albopictus most abundant
 - (2) Ochlerotatus triseriatus
 - (3) Ochlerotatus japonicus
 - 3. Ovipositioning
 - a) Begins slowly in mid-April
 - b) Declines slowly through Oct and stops at first frost
 - c) Winter egg diapause occurs
- VI. Industry Spotlight
 - A. Clarke
 - B. Adapco
- VII. South Carolina Update Chris Evans
 - A. Arbovirus update
 - 1. Birds
 - a) Started with just crows and jays
 - b) Now taking some other species
 - c) 21 birds submitted in 2014 From 10 counties
 - d) 2 crows were WNV+
 - 2. People
 - a) 46 tested from 11 different counties
 - b) 17 cases of imported CHIK
 - c) 2 cases of imported DEN
 - d) One unknown flavivirus positive, prob DEN
 - e) 4 WNV+
 - (1) 2 viremia donors
 - (2) 2 WNND, 1 imported From Mexico
 - 3. Mosquitoes
 - a) Tested 16000+
 - b) 17 counties submitted
 - c) Isolated Flanders virus In 12 pools
 - d) No WNV+ pools

- 4. Veterinary
 - a) 7 EEE+ horses
 - b) No WNV+ counties
- B. Viruses
 - 1. CHIK
 - a) Counts
 - (1) 11 human confirmed
 - (2) 3 human probable
 - (3) 3 human suspect
 - b) Sources
 - (1) Dominican Republic
 - (2) Haiti
 - (3) Puerto Rico
 - c) One person had DEN and CHIK from the DR
 - 2. DEN cases came from DR and the Philippines
 - 3. Unknown virus gotten in Uganda
- C. Aedes aegypti can be found in Charleston
 - 1. Long term site
 - 2. Attracted to gravid trap
 - 3. Small numbers
- D. Website http://www.scdhec.gov

Session 4: Friday, Oct 17

- I. Why Public Health and Mosquito Control Need to Work Together Rosmarie Kelly
- II. Commercial Pest Control from the PMP Perspective Larry Motes
 - A. Commercial applicators are part of the solution
 - B. Focus is primarily on nuisance mosquito control
 - C. Many are focusing on green solutions
 - D. Pest management of blood sucking Arthropods control trends
 - 1. Increasing control of mosquitoes and bed bugs
 - 2. Recent decrease in fleas
 - E. Bed bugs
 - 1. Heat treatment
 - 2. Canine inspectors
 - F. Mosquitoes
 - 1. Treat
 - a) Towns and cities
 - b) Golf courses
 - c) Universities
 - d) Sporting events
 - e) Homeowner associations
 - f) Gated communities
 - g) Residential
 - 2. Frequency
 - a) Repeat
 - b) Event driven
 - 3. Treatments
 - a) Larvicides
 - (1) Tire pile treatments

- (2) Catch basins
- b) Barrier spray
 - (1) Timing
 - (a) April-Oct
 - (b) Monthly application
 - (2) Mist blowers
 - (3) Do not apply to flowering plants
 - (4) Under decks
 - (5) Vegetation up to 8'
 - (6) Product
 - (a) Bifenthrin 1 ounce per 1000 sq ft
 - (b) Safe after if dries
- c) ULV
 - (1) Events
 - (2) Quick knockdown
- d) Aquatic weed control
- III. Colony Collapse Disorder Richard Spencer
 - A. What is happening with bees has an impact on mosquito control?
 - B. What is CCD?
 - 1. Sudden loss of worker adults from managed hives
 - 2. Entire colony collapses within a few weeks
 - C. Suspected factors
 - 1. Pests
 - a) Varroa mite
 - b) Tracheal mites
 - c) Small hive beetle
 - d) Africanized bees
 - e) Phorid fly
 - f) Bee louse
 - g) Wax moth
 - h) Other
 - 2. Pathogens
 - a) Viral
 - (1) Deformed wing
 - (2) Black queen cell
 - b) Bacterial foulbrood
 - c) Fungal chalkbrood
 - d) Microsporidia
 - e) Other
 - 3. Pesticides neonicitinoids
 - a) Direct application to crops
 - b) Seed coatings
 - c) Application drift to flowering plants
 - 4. Nutritional deficiencies
 - a) Stress for overwintering colonies
 - b) Reduces worker lifespan
 - c) Pollen key protein source
 - 5. Beehive management practices
 - a) Packed and shipped bees

- b) Medical care and nutrition
- D. Issues
 - 1. Do not know what historic bee hive loss has been
 - 2. Managed colonies
 - a) Estimated 2.6 million hives in US
 - b) Surveys focus on managed hives only
 - c) Less than 25% of beekeepers responded
- E. Protecting pollinators during mosquito control
 - 1. Educate applicators
 - a) Inspect treatment sites
 - b) Check for pollinators
 - 2. Remove breeding and resting sites where possible
 - 3. Larvicide
 - 4. Adulticide
 - 5. Communicate with homeowner
 - a) Do not guarantee no mosquitoes
 - b) Do not guarantee no disease
 - c) Homeowner has a role to play
 - (1) Set realistic claims
 - (2) Set proper expectations
 - (3) Keep good records
- F. The future
 - 1. Pollinator protection is important to control efforts
 - 2. Keep looking for new solutions
 - a) IGR sprayed on vegetation
 - b) Botanicals
 - 3. Keep on top of the research
 - 4. Work together
- IV. Bugs and Bodies: The Role of Insects in Crime Scene Investigations Rich Merritt
 - A. Forensic entomology is the study of insects and other arthropods applied to legal issues, mess in a court of law
 - B. History
 - 1. China 1235 AD
 - a) First record of insects used to solve a crime
 - b) Flies landed on the weapon of the murderer
 - 2. Discipline has grown from then
 - 3. Lots of TV and movie exposure
 - C. Disciplines
 - 1. Stored product
 - 2. Urban
 - 3. Medico-legal
 - D. Human body farm Knoxville, TN
 - 1. Started by Dr William Bass
 - 2. Bass Anthropological Research Facility (BARF)
 - E. The job of forensic entomology
 - 1. Postmortem interval (PMI)
 - a) Period of time between death and corpse discovery
 - b) Entomologist definition time between insect colonization and discovery
 - 2. Why use insects?

- a) Arrive soon after death arrival is species and environment dependent
- b) Arrive in predictable patterns communities change as decomposition proceeds
- c) Development is predictable based on temperature
- 3. Why are insects not used?
 - a) Too few forensic entomologists 15 in North America
 - b) Poor collecting
- F. The insects
 - 1. The flies
 - a) Calliphorids arrive early
 - b) Sarcophagids lay live maggots
 - c) Maggot mass increase temperature
 - 2. Beetles
 - a) Silphids
 - b) Staphylinids
 - 3. Incidentals
 - a) Lice
 - b) Butterflies
 - c) Ants inhibit decomposition by removing larvae
- G. The process
 - 1. Colonization
 - a) Rendezvous
 - b) Feast
 - c) Exodus
 - 2. Decay process after death (temperature dependent)
 - a) Fresh 1-2 days
 - b) Bloat 2-6 days
 - c) Active decay 5-11 days
 - d) Post decay 10-25 days
 - e) Dry 25+ days
 - 3. Factors affecting the process
 - a) Physical
 - (1) Body wrapped up
 - (2) Body stored
 - (3) Clothing
 - b) Chemical
 - (1) Treated bodies
 - (2) Narcotics
 - c) Climate
 - (1) Weather variables
 - (2) Under water
 - d) Animal disturbance
- H. Case histories
 - 1. Boys at the Cemetery
 - a) Hanging nude body thought to be a suicide
 - b) Middle of winter
 - (1) Insects associated with body die
 - (2) 3rd instar maggots found
 - (3) Needed to determine when adult flies were flying
 - c) Time of death was back when the temps were above 50 degrees

- 2. Maggots on Coke
 - a) Woman was stabbed 4 times in back
 - b) Most of the maggots were 1 week old
 - c) One species appeared to be several weeks old and was found in nasal cavities
 - d) Death had been one week ago but growth of the one species was accelerated due to cocaine use by the decedent
- 3. Black Fly Pupae Help to Solve a Murder Case
 - a) Man hired a hit man to kill his wife
 - (1) Tried to give her an overdose
 - (2) Ended up beating her to death
 - b) Dumped car and body into river
 - (1) Very cold water
 - (2) Lots of tannins in water
 - c) Found by divers in June
 - (1) Husband claimed wife had left but he had talked to her in the Spring
 - (2) Found black fly larvae on windshield
 - (a) Black fly larvae told another story
 - (b) Larvae attach in November

4. CHIP

- a) Situation
 - (1) Mother and son
 - (2) Son had cerebral palsy
 - (3) Neighbors stopped seeing Chip
 - (4) Mother stated he was living with relatives in CA
- b) Woman was a hoarder
- c) Dogs went to back bedroom
 - (1) Bed covered with cement
 - (2) Fan blowing across bed
 - (3) Human body found under cement on bed
- d) Skeltonized body found
 - (1) Forensic anthropologist determined who the body was
 - (2) Insects were found (60-90 days of development)
 - (a) Blowflies
 - (b) Phorids
 - (c) Dermestids
- e) What was the mother charged with? Welfare fraud
- f) Could not determine cause of death
- 5. Insects at the Grave
 - a) 25 year old murder
 - (1) Exhumed body
 - (2) Insects found in casket
 - (a) Springtails
 - (b) Coffin flies can complete life cycle underground
 - (3) Casket in a cement vault
 - b) Lot of moisture
- 6. Blood Meal Gone Bad
 - a) Paul Katts' case
 - b) Petichial hemorrhages on thighs
 - c) Body was warm when thrown out into wetland

- d) Mosquitoes probed body but could not get blood
- 7. Unchained Melody
 - a) Dead body floating in pond
 - (1) Chained and weighted down
 - (2) Body floated to top with decomposition gases
 - (3) Threw her into the lake alive
 - b) Blow flies attacked after body floated
 - c) Forensic anthropologist determined how long she was in the water
- V. Preparing for the Introduction of CHIK Henry Lewandowski
 - A. Protocol for dealing with CHIK
 - B. The disease
 - 1. High morbidity
 - 2. Most people do show symptoms
 - C. Asian strain introduced to the Caribbean in Dec 2013
 - D. What can we expect
 - 1. Small localized outbreaks likely
 - 2. Not well prepared for dealing with container breeding mosquitoes
 - 3. Southeast US is particularly vulnerable
 - E. Mosquito control
 - 1. Traditional
 - a) Traditional habitat is isolated with concentrated breeding
 - b) Flight ranges are long
 - c) Sites are easily reached
 - d) Amenable to larviciding
 - e) Remote and rural
 - 2. Container breeders
 - a) Short flight range
 - b) Asynchronous breeders
 - c) Many breeding sites
 - d) Urban and suburban
 - F. The virus
 - 1. Can human transmission be sustained?
 - 2. Can it establish in the US?
 - G. The vector
 - 1. Georgia strains of Aedes albopictus are susceptible to the Asian strain of CHIK
 - 2. Aedes aegypti is rare in Georgia
 - 3. Ochlerotatus triseriatus is a competent vector
 - 4. Ochlerotatus japonicus is also competent
 - H. What is happening in Chatham County?
 - 1. Focus on Ae albopictus and Oc triseriatus
 - 2. Need to know
 - a) Activity times
 - b) Trap preferences
 - c) When to spray
 - 3. Looking at activity levels using a collection bottle rotator to determine peak activity times
 - 4. Preparing for CHIK
 - a) Vector surveillance measure vector populations over time
 - (1) Oviposition traps

- (a) Labor intensive
- (b) Rapid development
- (2) Larval surveillance
 - (a) House index % houses with larvae
 - (b) Container index % containers with larvae
 - (c) Breteau index # positive containers per 100 houses inspected
- (3) Lethal ovitrap
 - (a) Attracts egg laying females
 - (b) Monitors adult population
- (4) BG sentinel traps
 - (a) optimize adult Aedes albopictus and Ae aegypti collections
 - (b) Will also collect Oc triseriatus
 - (c) Method chosen
- b) Next step is to pick sites for monitoring populations
 - (1) Need to determine thresholds for Aedes albopictus
 - (2) Need to determine human disease risk
- c) Source reduction hard to get people to keep containers contained
- d) Adulticiding
 - (1) Don't neglect the handheld foggers for small area control
 - (2) Aerial application
- e) Larviciding
 - (1) ULV methoprene
 - (2) Aerial larviciding
- f) Public education is vital
- I. Summary
 - 1. Use lessons learned from WNV
 - 2. You may need more than one option for control

Business Meeting

- I. Budget
 - A. Covered expenses
 - B. Thanks to commercial and sustaining members
 - C. 42 attendees
- II. Upcoming events Savannah
 - A. MAMCA meeting Jan 13-15, 2015
 - B. AMCA meeting 2016
- III. Board 2014-2015
 - A. President Alan Gaines
 - B. VP Jeff Heusel
 - C. Members
 - 1. 1-year: Kenna Graham
 - 2. 2-year: Joey Bland
 - 3. 3-year: Steve Pavlovich
 - D. Sustaining Member Rep: Steve Sullivan
 - E. Public Health Liaison: Rosmarie Kelly
 - F. Extension Liaison: Elmer Gray
 - G. Secretary-Treasurer: David Touwsma