Field Application of the Intensity Bottle Bioassay

Seth Irish

Annual Meeting of the Georgia Mosquito Control Association, October 15-17, 2014

Insecticide resistance

- "a heritable change in the sensitivity of a pest population that is reflected in the repeated failure of a product to achieve the expected level of control when used according to the label recommendation for that pest species" - Insecticide Resistance Action Committee
- Contributed to failure of disease control programs
 - Global Malaria Eradication Programme (1955-1969)
 - Resistance of headlice to permethrin/organophosphates

Types of resistance

- Metabolic
 - Esterases
 - Oxidases
 - Glutathione S-transferases
- Target-site mutation
 - Sodium channel (kdr)
 - Acetylcholinesterase (Acei^R)
 - GABA
- Other
 - Cuticular thickening
 - Behavior change

Wood et al. 2010, Parasites & Vectors

Resistance monitoring

- Detection of resistance mechanisms (genotypic)
 - Genotyping (target site mutations)
 - Biochemical analysis (metabolic resistance)
 - Semi-field/field data (behavior change)
- Bioassays (phenotypic)
 - Larval bioassays
 - Topical application
 - Timed exposure (WHO cone test, Bottle bioassay)

Bottle bioassay

Diagnostic time

Table 1: Sample diagnostic doses and diagnostic times for Anopheles and Aedes mosquitoes.			
Insecticide	Insecticide concentration per species (µg/bottle)		Diagnostic time
	Anopheles	Aedes	(minutes)
Bendiocarb	12.5	12.5	30
Cyfluthrin	12.5	10	30
Cypermethrin	12.5	10	30
DDT	100	75	45
Deltamethrin	12.5	10	30
Fenitrothion	50	50	30
Lambdcyhalothrin	12.5	10	30
Malathion	50	50	30
Permethrin	21.5	15	30
Pirimiphos-methyl	20	—	30

Synergists

- Piperonyl butoxide
 - Inhibits oxidase activity
- S.S.S-tributylphosphorotrithioate (DEF)
 - Inhibits esterase activity
- Ethnacrynic acid (EA), diethyl maleate (DM/DEM), and chlorfenethol (CF)
 - Inhibit glutathione S-transferase activity

Possible outcomes in bottle bioassays using synergists

Does resistance mean control failure?

Sometimes

Medical and Veterinary Entomology (2000) 14, 181-189

Impact of DDT re-introduction on malaria transmission in KwaZulu-Natal

R Maharaj, D J Mthembu, B L Sharp

<i>Objectives.</i> To determine whether the re-introduction of DDT in KwaZulu-Natal had any effects on malaria transmission in the province.	<i>Outcome measures.</i> The notified malaria cases and the distribution of <i>A. funestus</i> were measured to determine the effects of DDT re-introduction on malaria transmission.
Clinical Microbiology and Infectious Diseases, School of Pathology	y of the South African Institute for Medical Research and the
the Witwatersrand, Johannesburg, South Africa	Ammai, Plants and Environmental Sciences, University of

Does resistance mean control failure?

Sometimes not

Am. J. Trop. Med. Hyg., 73(5), 2005, pp. 859–864 Copyright © 2005 by The American Society of Tropical Medicine and Hygiene

PROTECTIVE EFFICACY OF LAMBDA-CYHALOTHRIN TREATED NETS IN ANOPHELES GAMBIAE PYRETHROID RESISTANCE AREAS OF CÔTE D'IVOIRE

MARIE-CLAIRE HENRY,* SERGE-BRICE ASSI, CHRISTOPHE ROGIER, JOËL DOSSOU-YOVO, FABRICE CHANDRE, PIERRE GUILLET, AND PIERRE CARNEVALE

Institut Pierre Richet, Bouaké, Côte d'Ivoire; Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France; Parasitic Diseases and Vector Control, Control, Prevention and Eradication, WHO, Geneva, Switzerland

Abstract. The efficacy of nets treated with lambda-cyhalothrin, a pyrethroid insecticide, on malaria infection and disease was assessed for the first time at the community level in *Anopheles gambiae* pyrethroid resistance areas. The study was carried out in northern Côte d'Ivoire, which is an area of *kdr* resistance. Four pairs of villages were selected and matched according to demographic, sociological, and ecological criteria. Among each pair, a village was randomly allocated to receive mosquito nets. More than 80% of beds were covered with nets treated with lambda-cyhalothrin and retreated after 6 months. In each village, 54 children aged 0–59 months were randomly selected and clinically monitored for 8 periods of 7 days throughout the year. Results showed that the efficacy of treated nets was maintained with a reduction of the prevalence of asymptomatic malaria infection by 12% and an estimated protective efficacy against malaria disease of 56%.

How can we tell when resistance is having an effect?

Intensity assay

Mushili, Ndola – *Anopheles gambiae* Deltamethrin

Multiples of Diagnostic Dose

Chipata – *Anopheles funestus* Deltamethrin February, 2012

After IRS (pirimphos methyl)...

Chipata – Anopheles funestus Deltamethrin May, 2012

Conclusions

- The bottle bioassay is a simple, standardized test which can detect resistance
- The use of synergists allows preliminary detection of the resistance mechanisms present in a population
- The intensity bioassay may be an effective way of determining "operationally significant" resistance
- These bioassays provide a sound basis for implementing resistance management strategies