GMCA Annual Meeting Oct 14-16, 2016

Oct 15: Session 1

- I. AMCA Washington Day Rosmarie Kelly
- II. Importance of Fabrication to a Mosquito Control Program Douglas Nelson
- A. Starting a project
 - 1. Why buy or build
 - 2. What efficiency
 - 3. When how soon is it needed
 - 4. Where where will the product be used
 - B. Some projects
 - 1. Chickens
 - a) Restraining device for bleeding chickens
 - b) Mobile chicken cages with predator proofing
 - c) Mobile cage hanger
 - 2. Traps
 - a) CDC light trap hanger
 - b) Gravid traps
 - c) Impinger traps for droplet testing
 - d) Hanger for bottle rotator stand
 - e) BG Sentinel trap covers
 - 3. Rearing cages
 - 4. Dual nozzle system for ULV truck spray rig
 - 5. Calibrated tiles for aerial spray testing
 - C. Costs
 - 1. Labor
 - 2. Hard materials
- III. Mansonia tittillans in Georgia Robert Moulis
 - A. New species introductions
 - 1. 1980s Aedes albopictus
 - 2. 2007 Culex coronator
 - B. 2014
 - 1. *Mansonia tittillans* found late in the season
 - 2. Associated with water lettuce and water hyacinth
 - a) Not commonly found in Savannah
 - b) Haven't yet found what it is using
 - 3. Found at 4 sites
 - a) One aspiration collection
 - b) 3 CDC light trap sites
 - c) Found at widely distanced sites north of Savannah
 - 4. 2015
 - a) Found in 7 sites in Chatham County
 - b) Found in 3 sites in Jasper County SC
 - c) Had been found in Beaufort County SC before
 - d) Low numbers overall but numbers are increasing
 - C. Looks to be a natural introduction
 - D. Species is known to be a nuisance species
 - E. Species is a late season species (Aug and later)

- F. Historic records
 - 1. Both Mansonia spp have been found in several counties in Georgia
 - 2. Not all records can be confirmed
- G. Habitat
 - 1. Mixed hardwood
 - 2. Commonly found with *Culex nigripalpus*
 - 3. Seems to be using cattails
- IV. Culicoides Biting Midges of the SE US Stacy Vigil
 - A. Ceratopogonidae
 - 1. ~150 species in US
 - 2. ~1300 species world wide
 - 3. Not well described
 - a) 31 sub genera
 - b) 38 species groups
 - c) 13% uncategorized
 - 4. Wide variety of habitats
 - a) Mud
 - b) Saltmarsh
 - c) Wet sands
 - d) Tree holes
 - e) Decaying vegetation
 - 5. Medical importance
 - a) Bite irritation (sweet itch)
 - b) Transmit arboviruses, protozoa, and filariasis parasites
 - c) Veterinary problem in the US
 - (1) Orbivirus
 - (a) Blue tongue (BTV)
 - (b) EHDV
 - (2) Endemic in the SE
 - (3) Outbreaks and spreading is occurring in other parts of the world
 - B. Surveillance
 - 1. Mapping current distribution
 - 2. Method
 - a) CDC traps
 - (1) No CO2 used
 - (2) Trap into ethanol collection jars
 - b) Identification done by morphological characteristics
 - c) Some have to be slide mounted
 - 3. Study has run from 2007
 - a) 55 species found
 - (1) All SE except FL 34 species
 - (2) FL 32 species
 - (3) Trap efficiency is 60%
 - b) Culocoides insignis makes up 77% of species caught in FL
 - (1) Known vector
 - (2) No known transmission in US
 - c) Range changes have been seen based on historic data
 - C. Some species
 - 1. Culicoides sonorensis

- a) Associated with livestock
- b) Range seems stable
- c) Distribution is spotty
- d) 3 sibling species
- e) Primary vector of BTV in SE
- 2. C. insignis
 - a) Primarily found in South America
 - b) Range is changing
 - *c)* Vector of BTV in neotropics
- V. Wing Beats Magazine Stephen Sickerman
 - A. The cover story
 - 1. Fall 1990 (Sunrise edition)
 - 2. Current events in mosquito control
 - 3. Looking for cover photos
 - B. The inside scoop
 - 1. Price free!
 - 2. Industry support is vital
 - 3. Magazine put out quarterly
 - C. Always looking for articles
 - 1. 1500 to 2500 words
 - 2. Not refereed
 - 3. Pictures, graphs, charts accepted
- VI. Industry Spotlight
 - A. AllPro Joe Andrews
 - B. Bayer Gordon Morrison
 - 1. Deltagard (deltamethrin)
 - a) Type II pyrethroid
 - b) No synergist
 - c) Very low dose
 - 2. Now available for wide area control
 - C. Central Life Sciences Steve Sullivan
- VII. Public Perception in a Post-Ferguson World Florrie Kohn
 - A. Need to know your community
 - 1. Mosquito control is a public service
 - 2. Public perception does impact your job
 - 3. Be aware of agendas
 - B. Public perception
 - 1. Understanding what view the public has about issues
 - 2. Swayed by media
 - 3. Can be difficult to change a negative public perception
 - 4. Dealing with public perception
 - a) Maintaining a positive public image
 - b) Be honest and open
 - c) People tend to lump groups
 - d) Social networking feeds into the viewpoints of society
 - e) Your behavior will have an impact on your industry
 - 5. Ferguson, MO
 - a) Young people want things fixed today
 - b) Social media and cell phones spread viewpoints rapidly

- (1) Anonymous contributors
- (2) No accountability
- (3) Rapid dissemination
- 6. Actions will be interpreted according to the viewers mindset and experiences
- 7. It is important to consider the perceptions and experiences of others
- C. Communication is the key
 - 1. Racial issues
 - 2. Generational issues
 - 3. Environmental issues
 - 4. Economic disparities
- D. Situations can rapidly become wide spread and out of control
- E. Mosquito control in black neighborhoods
 - 1. Enlist the neighborhood
 - 2. Get messages to black organizations
 - 3. Go to black churches
 - 4. Have black spokespersons
 - 5. Praise those in the community who do things correctly
 - 6. Make your messages conversational, not an order
 - 7. Remember, not everyone has internet access
- F. Key points
 - 1. Public perception changes quickly
 - 2. Be prepared to deal with issues
 - 3. Public perception can be wrong
 - 4. Public perception is visual
 - 5. Public perception is shaped by the media
 - 6. Public perception is different for everyone
 - 7. Problems exist there are things that must be understood
- VIII. Pesticide Safety through Label Interpretation Mickey Taylor
 - A. EPA update
 - 1. Proposed new certification and training rule
 - a) www2.epa.gov/pesticides-worker-safety/EPA-proposes-stronger-standardspeople-applying-riskiest-pesticides
 - b) 3-year certification cycle
 - c) Will need CEUs in core and in category
 - 2. Minimum age for RUPs will be 18
 - B. THE LABEL IS THE LAW
 - 1. Pesticide names
 - a) Chemical name
 - b) Common name
 - c) Trade name
 - 2. Signal words
 - a) Levels
 - (1) Danger-Poison (I): high toxicity
 - (2) Danger (I)
 - (a) High
 - (b) Eye and skin damage concerns
 - (3) Warning (II) moderate
 - (4) Caution (III) slight
 - b) Indicate the relative acute toxicity

- 3. Precautionary statements
 - a) PPE
 - b) Routes of contamination
 - c) Specific action statements
 - d) Statement of practical treatment
 - (1) First aid
 - (2) Antidotes
 - e) Hazards
 - f) Equipment needs
 - g) Environmental hazards
- 4. Bee advisory box
 - a) New from EPA
 - b) Pollinator protection
- 5. Physical or chemical hazards
 - a) Flammable
 - b) Corrosive
- 6. Emergency contact info
 - a) CHEMTREC
 - b) Local poison control
 - c) Local physicians
- C. Deviations
 - 1. Host or site must be on the label, but the pest does not have to be listed
 - 2. Any application method not prohibited can be used
 - 3. Pesticides can be applied at lower doses than specified on the label
 - 4. Pesticides can be combined with other substances unless prohibited on the label
- D. Public perception
 - 1. Be professional
 - 2. Communicate what and why
 - 3. Stay current with current practices
 - 4. Be prepared- educate
 - a) Have copies of SDS and labels to hand out
 - b) Do not ever lie or make things up
 - c) Have application records available
 - d) Be careful of your language
- IX. Status Update on Investigations of Residential Mosquito Treatments Tiffany Nguyen
 - A. On campus surveillance study
 - 1. Trapping
 - a) CDC light trap with CO2
 - b) CDC light trap without CO2
 - c) Gravity trap
 - d) Insect sweep nets
 - e) Vacuum sampling device
 - 2. Site
 - a) Courtyard with clogged drain 2014
 - b) UGA fixed drain 2015
 - 3. Weather patterns monitored
 - B. Efficacy studies barrier sprays
 - 1. Three on-campus sites
 - 2. Cage studies

- a) Different plants
- b) Lab reared species from eggs collected at field sites
- 3. Residential studies
- C. Shadowing pest control companies
 - 1. Methods
 - a) 30 treatment houses
 - b) 23 control houses
 - c) 2 different pest control companies
 - d) Treatment was once a month
 - e) Sampling done twice a month
 - 2. Results
 - a) Applicator makes a difference
 - b) Product makes a difference
 - c) There was a benefit to barrier spray, but a lot of houses in the area did not have a problem with mosquitoes

Oct 16: Session 2

- I. Entomology in Georgia, a Personal Viewpoint Ray Noblet
 - A. Started in radiation biology with pest species
 - B. Need for medical entomology expertise
 - 1. End of Vietnam War
 - 2. Malaria issues
 - C. Got into working on black flies at Clemson University
 - 1. Asked to talk to veterinarians about black fly
 - 2. Needed info on Leucocytozoon smithi
 - D. Moved to UGA
 - 1. Brought lab to UGA
 - 2. Got interested in Bti and black fly control in the 1980s
 - E. Need for tools beside chemical insecticides for vector control
 - 1. Need for education
 - 2. Need for lobbying to support entomology programs
 - F. Extension programs
 - 1. Broad knowledge base in Georgia
 - 2. Good support from administration at UGA
 - G. New tools, new ideas
 - 1. Control
 - a) Agricultural pest control
 - b) Urban pest control
 - c) Vector control
 - d) Nuisance species control
 - 2. Toxicology
- II. Rethinking Repellents to Save 200,000 Lives Per Year Hogan Bassey
 - A. Dose makes the poison
 - 1. Repellents that are "safe" to use in developed countries may not be safe in undeveloped worlds
 - 2. 3 million die annually from mosquito-borne and bacterial diseases
 - 3. \$400 billion lost GDP annually (cycle of poverty)
 - 4. 250 million are disfigured due to lymphatic filariasis
 - B. Mosquito repellents aren't always available

- C. Current controls
 - 1. Bed nets used for a variety of things besides their intended function
 - 2. Pesticides are not readily available
 - 3. Prophylaxis isn't available or doesn't work
 - 4. Need for an easy to use, easily available product
 - 5. Paths to transformation
 - a) Science
 - b) Economics
 - c) Culture adoptability
- D. Liv Ful http://www.livful.com/
 - 1. Encapsulated
 - a) Water-based
 - b) Incorporates an antiseptic
 - c) Incorporates a hydrating moisturizer
 - d) Slow evaporation
 - e) Less absorption
 - 2. Comes as a wipe
 - a) Sweat proof
 - b) Easy to use
 - 3. Manufacturing creates local jobs
 - 4. Active ingredient
 - a) Used DEET initially
 - b) Switched to IR3535
 - (1) Biopesticide
 - (2) Long lasting efficacy
 - (3) Safe for children as young as 2 months
 - (4) Odorless
 - (5) Safe for sensitive skin
 - (6) Light lotion feel
 - 5. Product cost
 - a) Wholesale distribution model
 - b) Subsidized model with corporate sponsors
 - 6. Next stage working on making everything biodegradable
- III. R U Ready? Scott Yackel
 - A. Need to be prepared
 - B. Preparing for the season
 - 1. Budget for products
 - 2. Repair equipment
 - 3. Calibration
 - 4. Hiring and training
 - C. Preparing for the unexpected
 - 1. Vehicle accidents / Chemical spills
 - a) Training
 - b) Equipment
 - 2. Non-target issues / Citizen complaints
 - a) Educate the public
 - (1) Go to the public
 - (2) Provide them with information on why and how control is done
 - b) Targets

- (1) Bee Keeper Association
- (2) Homeowners Association
- (3) County Extension Programs
- (4) Schools
- (5) Community Organizations and Clubs
- c) Notifications
 - (1) Annual
 - (2) Recurring
- 3. Be aware of significant community events
- D. Paperwork, paperwork, paperwork
 - 1. Document everything
 - a) Document notifications
 - b) Keep a treatment log and maps
 - c) Keep a treatment data sheet
 - d) Keep calibration sheets with serial numbers
 - 2. You will be prepared when there is an issue
- E. When there is an issue
 - 1. State Investigation
 - a) Need documentation for every line of the label
 - b) Have a written procedure
 - 2. State Inspection
 - a) Be sure everything is clean and in good repair
 - b) Make sure equipment and containers are labeled
 - c) Calibration records
 - 3. The operation is responsible, but so is the applicator
- IV. The Use of Larvicides to Suppress *Culex* spp Mosquitoes in Grant Park, Atlanta, GA JR McMillan
 - A. Pilot study related to dissertation
 - 1. WNV model system
 - 2. Effects of Larvicides on transmission
 - B. Defining primary and secondary vectors
 - 1. Blood feeding behavior
 - 2. Vector competence
 - 3. Abundance and distribution
 - 4. Persistence of transmission
 - C. Ecological vs public health approach
 - D. WNV
 - 1. Primary vector Culex pipiens complex
 - 2. Secondary vectors
 - a) Other Culex spp
 - b) Aedes albopictus
 - c) Ochlerotatus japonicus
 - d) Others??
 - E. Methods
 - 1. Case basins where *Culex* spp are breeding
 - a) Focused on parks and neighborhood parks
 - b) Treatment and control sites
 - 2. Applied Larvicides to catch basins
 - 3. 3 dips per week to collect larvae, pupae, and eggs

- 4. Treated catch basins with Bti weekly
 - a) 36 permanent and semi-permanent sites
 - b) Also dumped out containers
- 5. July 16-Sept 9, 2011
 - a) Weekly gravid traps
 - b) Occasionally set light trap in catch basin
- F. Mosquito data
 - 1. 2014 data
 - a) No treatment done
 - b) Positive mosquitoes were found
 - 2. 2015
 - a) Treatment had a statistically positive effect on larvae and pupae
 - b) Adult numbers were lower but female number change was not significant
 - (1) Good breeding sit
 - (2) Good resting site
 - c) Community numbers were not statistically different for 2014 and 2015 and for treated and untreated sites
- G. Still to do
 - 1. Analyze bird data
 - 2. Analyze virus data
- H. Future direction
 - 1. Are Larvicides alone effective?
 - 2. How large is the population of Culex breeding above ground?
 - 3. How about below ground populations?
- V. Industry Spotlight
 - A. Valent BioSciences Candace Royals
 - B. UNIVAR Jason Conrad
 - C. B & G Chemical Claude Thomas
- VI. Variation in Mosquito Microclimate and Implications for Vector-Borne Disease Transmission - Courtney Murdock

A. Background

- 1. The distribution of vector-borne diseases can largely be explained by changes in ambient temperature
- 2. Mordecai et al, 2013, Ecology Letters many parameters are associated with the mosquito and are affected by temperature in a non-linear way
- 3. Diurnal temp fluctuation will integrate with mean temperature to affect disease transmission temperature variation is important
- PLoS One 2014 dengue transmission (<u>http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089783</u>)
- 5. Heterogeneity in landscape affects microclimate
- B. Objectives
 - 1. Does mosquito microclimate vary
 - a) Urban
 - (1) Higher average temp
 - (2) Lower relative humidity
 - b) Suburban
 - c) Rural
 - 2. Does variation translate into variation in mosquito traits
 - 3. Can local weather stations be used to predict microclimate

C. Study sites

- 1. Locations
 - a) 3 urban lots of impervious surface
 - b) 3 suburban
 - c) 3 rural greatest diversity in land use
- 2. 30 x 30 m sites
- 3. Methods
 - a) Mason jars with data logger at bottom filled with 300 ml leaf infusion
 - b) Cage over top
 - c) Data logger in shade in area
- 4. Data
 - a) 2 replicates
 - (1) June
 - (2) Sept
 - b) Adults collected daily
 - (1) Size
 - (2) Rate of development
 - (3) Number emerging
 - (4) Per capita growth rate
 - c) Hypothesis urban mosquitoes will be smaller and fewer in number
- 5. Results
 - a) Microclimate does vary in different areas
 - (1) Urban sites are hotter overall
 - (2) Less difference in warm part of the season
 - (3) Urban sites are less humid
 - b) Mosquito traits
 - (1) Larval survival was lower in urban areas
 - (2) Development rates were faster in urban areas in the fall
- 6. Conclusions Land use appears to be a predictor for mosquito ecology
- 7. Future research
 - a) What impact, if any, is there on disease transmission
 - b) How can microclimate be determined using available data

Session 3

- I. Zooprophylaxis: Using Livestock as Trap Crops for Disease Vectors Annie Rich
 - A. System being studied malaria
 - 1. Many people die every year
 - 2. Difficult to control due to economic conditions where transmission occurs
 - 3. Current effort for control
 - a) Bed nets
 - b) Prophylaxis
 - c) Pesticide treatments
 - B. Vector Anopheles spp
 - C. Zooprophylaxis
 - 1. Using livestock to draw vectors from human hosts
 - 2. Can be passive
 - a) Put livestock outside community or home
 - b) Dilutes number of bites on human hosts
 - 3. Active or pesticide method

- a) Inoculate livestock
- b) Kills mosquitoes when they feed on the livestock
- 4. Vector considerations
 - a) Anthropophilic mosquitoes prefer to feed on humans, but will feed on livestock if humans are unavailable
 - b) Zoophilic mosquitoes prefer to feed on livestock
- 5. Considerations
 - a) How many anthropophilic mosquitoes are drawn out of the houses to feed on the livestock?
 - b) Does adding livestock attract additional mosquitoes?
- D. Research question will product kill mosquitoes that feed on cattle?
 - 1. Product used to inoculate cattle eprinomectin
 - a) Long lasting
 - b) Resistance seen to ivermectin
 - 2. Rearing Anopheles quadrimaculatus
 - 3. Procedure
 - a) Rear mosquitoes on cattle blood
 - b) Shave patches on cattle
 - c) Inoculate cattle
 - d) Feed mosquitoes on cattle
 - e) Draw blood to check for product
- E. References
 - 1. http://www.ncbi.nlm.nih.gov/pubmed/2519684
 - 2. http://www.malariajournal.com/content/14/1/313
- II. The Next Frontier: Exploring the Function of Bacteria in the Mosquito Gut Kerri Lynn Coon
 - A. Insect-microbe associations are ubiquitous in nature
 - B. Mosquito-microbe associations
 - 1. Mostly focus on vector competence
 - 2. Molecular Ecology (2014), Coon et al
 - a) Mosquitoes guts contains a relatively simple bacterial community
 - b) Determined by community in environment
 - c) Why are bacteria present
 - (1) Axenic larvae can be developed by:
 - (a) Sterilizing surface of egg
 - (b) Rearing in bacteria free water
 - (2) Axenic larvae do not develop or molt
 - (3) Any viable bacteria that can colonize the gut of larvae will "rescue" development of the larvae
 - 3. Do field reared mosquitoes how the same results?
 - a) Bacterial communities very variable
 - b) Very site specific
 - c) Axenic mosquito larvae do not molt
 - d) Rescue depends on successful colonization of the larval gut
 - C. What mechanism underlies this mosquito bacteria interaction?
 - 1. 2 approaches
 - a) Bacteria-centric
 - b) Mosquito-centric
 - 2. Approach 1
 - a) Used *E. coli* as the bacteria

- b) Density threshold for colonizing mosquito
- c) Bacteria abundance varies over time
- d) Effect of bacteria mutation
 - (1) Growth-defective bacteria did not rescue development
 - (2) Colonization-defective bacteria did not colonize mosquito guts
 - (3) Rescue-defective bacteria can grow and colonize mosquitoes but did not rescue
- 3. Approach 2 Do bacteria contribute to mosquito digestion?
 - a) Methods
 - (1) Characterize the expression and activity of key digestive enzymes in the presence/absence of bacteria
 - (2) Develop a defined (holidic) diet to screen for digestion of major nutrient classes
 - b) Considerations
 - (1) The guts of mosquito larvae are strongly alkaline
 - (2) The guts of axenic larvae have little to no enzymatic activity
 - (3) Bacteria are contributing to the high pH in the larval gut
 - c) Other organisms can be weak rescuers yeast, Protozoa, etc
- III. Mosquito-Borne Diseases in Georgia: Connecting our Past to the Future Mark Blackmore
 - A. Mosquitoes in Georgia
 - 1. 55 species
 - 2. 12 genera
 - 3. Recent introductions have occurred
 - B. Only a few are vectors of concern
 - C. Lessons
 - 1. Diseases
 - a) Malaria
 - (1) Pathogen introduced
 - (2) Competent vector was present
 - b) Yellow Fever
 - (1) Vector introduced
 - (2) Pathogen introduced
 - 2. Establishment is possible
 - a) Changing landscape
 - b) Demographic patterns
 - D. Historic perspective
 - 1. Periods of interest
 - a) Pre-Colonial period
 - b) 1733-1940
 - 2. Malaria
 - a) 2 species established in North America
 - (1) Plasmodium falciparum West Africa
 - (2) Plasmodium vivax Europe
 - b) Georgia colonization
 - (1) European and African coastal settlements
 - (a) Rice & indigo are labor-intensive crops
 - (b) Impoundments increase Anopheles habitat
 - (2) Susceptibility to malaria differed between Africans and Europeans
 - (3) Small farms and plantations brought malaria inland

- (a) Deforestation increased *Anopheles* habitat
- (b) Slave labor brought parasites into area
- c) Civil War in Georgia
 - (1) Malaria well established
 - (2) Atlanta campaign
 - (a) High morbidity
 - (b) Relatively low mortality
 - i) Higher for Confederate troops
 - ii) Lack of quinine for treatment
 - iii) Local alternatives
 - (1) Dogwood
 - (2) Georgia bark (Pinckneya pubens
 - https://en.m.wikipedia.org/wiki/Pinckneya_pubens/
 - (3) Willows
- d) 1865 1945
 - (1) Background disease
 - (2) Mostly affected low income families
 - (3) Economic costs
 - (4) Cycled between low periods and resurgences
 - (5) Data problems
 - (a) Under-reporting
 - i) Positive diagnoses not being reported
 - ii) 1939 40% cases not reported
 - (b) Over-reporting
 - i) Insurance didn't pay for syphilis or TB
 - ii) Did pay for malaria deaths
 - iii) Febrile illnesses often reported as malaria post-mortem
 - (6) Military camp cases
 - (7) Resurgence in 1934-1936
 - (8) Tennessee Valley Authority established
 - (9) USPHS station in Baker County documented malarious areas in Georgia
 - (10) MCWA (1942)
 - (a) Set up to protect shoulders
 - (b) Protect workers from returning vets who were ill
 - (c) Grew into the CDC
 - (d) Push to use DDT to eradicate mosquitoes
- 3. Yellow Fever
 - a) Epidemics in Savannah (percent population dying)
 - (1) 1820 (9%)
 - (2) 1854 (6%)
 - (3) 1858 (0.6%)
 - (4) 1876 (3%)
 - b) Mostly coastal and urban
 - c) Hit and spread rapidly then disappeared
 - d) Major Ely McClellan
 - (1) Analyzed 1876 epidemic
 - (2) Miasma or infection?
 - (3) Conclusions
 - (a) Most severe in ports

- (b) Inland cities with outbreaks were located on major roads or rail lines
- (c) Refugees carried disease inland
- (d) Carried on ships largest outbreaks associated with ships from Cuba
- (4) Quarantine Station established on Blackbeard Island
- e) What happened to yellow fever
 - (1) 1881 Carlos Finlay established the connection between yellow fever and *Aedes aegypti*
 - (2) 1900 Reed Commission demonstrated transmission
 - (3) 1905 last outbreak in New Orleans
 - (4) 1936 Max Theiler developed a vaccine
 - (5) Yellow fever disappeared from North America
- E. What about today?
 - 1. West Nile Virus
 - 2. EEE
 - 3. LAC
- F. What about the future?
 - 1. DEN
 - 2. CHIK
 - a) Togoviridae
 - b) Originally an African virus
 - (1) 2 lineages
 - (2) Vector is Ae aegypti
 - c) Recently spread to the Caribbean
 - d) One variant is more likely to be spread by Ae albopictus
- G. Bottom line
 - 1. Need to be concerned
 - 2. Vulnerability to a disease does not mean it will become a problem
 - a) Aedes aegypti
 - (1) Anthropophilic
 - (2) Bite indoors
 - (3) Container breeder
 - b) Aedes albopictus
 - (1) Abundant
 - (2) Not host specific
 - 3. Reality
 - a) Disease transmission is complicated
 - (1) Weather conditions affect mosquitoes and transmission
 - (2) Cultural and economic factors
 - b) Need a better understanding of the ecology and behavior of mosquitoes
- IV. Integrated Mosquito Management Rosmarie Kelly
- V. Arboviruses of Veterinary Importance Koren Custer
 - A. Diseases
 - 1. Spread rapidly with possibility of introduction into new areas
 - a) Foreign animal diseases
 - b) Transboundary animal diseases
 - 2. Nationally or state reported diseases
 - a) Dependent on state industry and regulations
 - b) May be eradicated or at low transmission levels
 - c) Diseases cause economic and public health issues

- d) International trade issues
- B. Lists
 - 1. State reportable diseases
 - 2. National animal health reporting system
 - 3. Organization for world animal health
 - a) 117 member countries
 - b) Early warning to reduce risk of disease spread
- C. Vector-borne diseases
 - 1. Vesicular stomatitis
 - a) Affects equines, cattle and swine
 - b) Resembles foot and mouth disease
 - c) Zoonotic flu like syndrome in people
 - d) Vectors (transovarial transmission)
 - (1) Sand fly
 - (2) Black fly
 - (3) Culicoides
 - (4) Also mechanical vectors
 - 2. WNV
 - 3. Bluetongue and EHD
 - a) Related viruses
 - b) Bluetongue
 - (1) Affects sheep primarily
 - (2) Vector is Culicoides
 - c) Epizootic hemorrhagic disease
 - (1) Affects deer kills them
 - (2) Usually doesn't kill cattle
 - 4. Texas cattle fever (bovine babesiosis)
 - a) Tick vectored
 - b) Some mechanical transmission by of mites and biting flies
 - c) Some degree of zoonosis
 - d) Eradicated in the US in 1943 permanent quarantine zone
 - 5. Heartwater
 - a) Ehrlichia ruminantium
 - b) Vectored by Amblyomma ticks
 - c) Thought to be spread in the Caribbean by cattle egret
 - d) Causes damage to the heart
- VI. Industry Spotlight
 - A. Chemical Containers Rick Eufrasio
 - B. Clarke Joe Strickhouser
 - C. Adapco Trey English
 - D. AMVAC Peter Connelly
- VII. Richmond County Mosquito Surveillance Update Matt Erickson
 - A. Sites -
 - 1. 15 in county
 - 2. Phinizy Swamp
 - B. Objectives
 - 1. Describe species assemblages
 - 2. Compare relative abundance
 - 3. Track activity patters

- C. Jan 2014 Aug 2015
 - 1. 678 trap nights
 - 2. 30 species found
 - 3. Started virus testing 1 WNV+
 - 4. Activity
 - a) Range
 - (1) Begins in April
 - (2) Ends in Oct
 - b) A few mosquitoes can be found every month of the year
 - c) Appears to be temperature dependent
 - (1) Average low >50F
 - (2) Average high >90F
 - d) Peaks
 - (1) May-June
 - (2) Sept-Oct
 - 5. Abundance
 - a) Swamp has highest number of mosquitoes
 - b) 4 of 5 highest sites are adjacent to the swamp
 - 6. Diversity
 - a) Number of species
 - (1) Minimum number of species 7
 - (2) Maximum number 23
 - (3) Average 16.8
 - b) Menhinick's index score diversity index (http://www.colby.edu/biology/BI131/Lab/Lab09CalcBiodivers.pdf)
 - c) Species evenness
 - (1) Shannon's equitability http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html
 - (2) High range of values
 - (3) Excluding wetland data leads to more even distribution of species
 - d) Landcover vs mosquito diversity
 - (1) Good correlation except for 4 sites
 - (2) Mosquito control may have an impact
- Oct 16 Session 4
- I. Glynn County Update: Transitioning from an In-House Program Steve Pavlovich
 - A. County
 - 1. Established in 1777
 - 2. 585 sq miles
 - 3. 85000 population
 - 4. Economy includes tourism
 - B. Program history
 - 1. Started in early 1970s
 - 2. 1978 became an IMM program
 - a) John Carter
 - b) Olan Chancy
 - 3. 2002-2012: transitional period
 - 4. 2013 decided to outsource
 - C. Contract Program

- 1. Did a mosquito survey throughout the county
 - a) Got the species that were expected
 - b) Numbers coming off impoundment areas were unexpected in some cases
- 2. Used data to formulate a plan
- 3. Created a stand-alone operation
 - a) Purchase new equipment
 - (1) Trucks
 - (2) Spray equipment
 - (3) ATV
 - (4) Traps
 - b) Locate, establish, outfit new office
 - c) Hire local staff
 - d) Aerial base for fixed wing aircraft
 - e) Chemical containment and mixing facility
 - f) Training and licensing
- D. The program was tailored to the special needs of the county
- E. Personnel
 - 1. General Manager
 - 2. Chief Biologist
 - 3. Program Manager Entomologist
 - 4. 4 Field Techs
 - 5. Drivers
 - 6. Secretary
- F. IMM program
 - 1. Inspections
 - a) GPS mapping of breeding sites
 - b) Rain gauge stations
 - c) New Jersey light traps
 - d) Gravid & CDC light traps
 - e) Ovitraps
 - f) Landing rate sites
 - 2. Surveillance
 - a) Nuisance
 - b) Vector
 - (1) Contract with University lab
 - (2) Year round testing
 - 3. Larviciding
 - a) Mosquito fish
 - b) Biochemical control
 - 4. Aerial application
 - a) Partnered with Dynamic Aviation
 - b) Larviciding and adulticiding of impoundment areas
 - 5. Ground spraying
 - a) Handheld thermal and ULV sprayers
 - b) Truck mounted ULV
 - 6. Public education
 - a) Residential inspections
 - b) Pamphlets
 - c) Presentations

- d) PSAs
- G. Data
 - 1. Track number of service requests
 - 2. Track rainfall
 - 3. Track mosquito populations
- H. Other efforts
 - 1. Special events barrier spray
 - 2. Resistance testing
 - a) Bottle bioassay testing
 - b) Field cage testing
 - c) Larvicide ditch testing
 - 3. Droplet testing
- I. Challenges be prepared
 - 1. Public
 - a) Educating anti-pesticide groups
 - b) Beekeepers
 - c) Organic gardeners
 - 2. Political who was really in charge of the program
- II. My First Year as Operations Manager Allen Hillman
 - A. Things learned
 - 1. Fairness and honesty
 - a) You must be fair in your dealings
 - b) Don't start out with a bad reputation
 - c) Tell the truth and keep the respect of your crew
 - d) Remember, you are the boss and not a friend at work
 - 2. Ask questions
 - a) If you don't know, ask
 - b) Be willing to assist and be willing to ask for help
 - 3. Lead by example
 - a) Always be willing to do anything you ask your crew to do
 - b) Be professional
 - c) Be on time
 - d) Communicate clearly
 - e) Dress appropriately
 - f) Leaders need to be part of the team
 - 4. Learning
 - a) This is a continual thing
 - b) Learning should always be positive
 - c) Learn things well so you can teach the next person
 - d) Remember the paperwork
 - e) Learning about the people you work with and the people you serve is also important
 - 5. Tasks
 - a) There are things that must be checked every day
 - (1) Truck and equipment maintenance
 - (2) Daily paperwork
 - (3) Work assignments
 - b) It is important to keep up with these things to have the most productive day possible

- c) Even with daily tasks, it is important to look ahead
- d) Customer service is an important part of the job
- 6. It is all about the mosquitoes
 - a) About 24 species in area
 - b) Surveillance is important to the job
 - c) Knowing the species leads to knowing their biology and habitats
 - d) Knowing which species helps determine how best to deal with complaints
 - e) If you have to deal with NPDES, then use it to your advantage
- B. It is all about looking to the future and improving both yourself and your program
- III. Public Works and Mosquito Control Robert Seamans
 - A. Mosquito control is part of Streets & Parks
 - 1. Program started in 1999
 - a) Citizens wanted spray
 - b) Lots of complaints
 - 2. The process
 - a) Met with Mayor and Council
 - b) Met with City Manager
 - c) Met with citizens
 - 3. Bottom line
 - a) Not a mosquito control program
 - b) Public works program that does mosquito control as part of the other duties
 - 4. In the beginning
 - a) Sprayed when there were complaints
 - (1) Started learning more about mosquito control
 - (2) Had to meet the level of expectation of the citizens
 - b) Became involved in GMCA
 - c) Budget was, and is, an issue
 - (1) Had personnel, but no one was specifically assigned to mosquito control
 - (2) Had a sprayer
 - (3) Had the drive to do the job
 - d) Did the best job possible
 - e) Sprayed by calendar
 - 5. 2002 growing the program
 - a) Received \$3000 budget
 - (1) Had to move other money around
 - (2) Learned to play the budget
 - b) WNV was getting started in Georgia
 - c) Came to GMCA meetings
 - d) Resources
 - (1) Truck
 - (2) ULV machine
 - (3) Personnel
 - 6. Things you need to learn
 - a) The boss needs to know what you know
 - b) Educating the public is vital to the job
 - c) You need to know what mosquitoes are out there
 - d) It is important to have good contacts
 - e) You do not have to be an expert, just know what the key points are
 - f) It doesn't need to be complicated

- (1) Something is better than nothing
- (2) Baby steps will build a program
- 7. Work with those outside your own department or agency
 - a) Get the GIS folks involved
 - b) Do a trial run of your procedures
 - c) Be involved
 - d) Meet with the pesticide reps, they are a great resource
 - e) Develop relationships with agencies that do oversight
- 8. Paperwork is important
 - a) Build in cost and time saving components
 - b) Start small and build
 - c) Good relationships will help bring in technology
- B. The program has evolved
 - 1. It started with nothing
 - 2. It is now a good program
 - a) Personnel
 - b) Truck
 - c) Spray unit
 - d) Mapping
 - e) Spray zones
 - f) Mosquito surveillance and ID
 - g) Pesticides
 - 3. Complaint driven
 - 4. Developed protocols
 - 5. Continuing to build
- C. Being prepared is the greatest asset
- IV. Evaluation of the CDC Autocidal Gravid Trap in the Context of LACv Vectors Monica Henry
 - A. History and background
 - 1. LAC was historically found in the Midwest
 - 2. It has been shifting more towards the Appalachian region recently
 - 3. LAC
 - a) Disease of children under the age of 16
 - b) Peaks from June thought Nov
 - c) Vectors
 - (1) Ochlerotatus triseriatus is primary
 - (2) Aedes albopictus
 - (3) Ochlerotatus japonicus
 - d) Maintained in small mammals
 - e) Transovarial and venereal transmission occur
 - B. Why the shift to western North Carolina
 - 1. Human encroachment into areas where mosquitoes are found
 - 2. Insufficient vector control
 - 3. Methods
 - a) Trapping
 - (1) Baited CDC light traps
 - (2) BG sentinel traps
 - (3) Nasci aspirator
 - b) Autocidal Gravid ovitrap (AGO)
 - (1) Set up

- (a) Black bucket
- (b) Hay infusion packet
- (c) Sticky board
- (2) Attracts Gravid females
- (3) Easy to use and maintain
- (4) Cost effective
- 4. Study
 - a) Determine the effectiveness of AGO for LAC surveillance
 - (1) Used several attractants
 - (a) Hay infusion
 - (b) Oak leaf infusion
 - (2) 36 traps in field
 - (3) Randomized block design
 - (4) 3 replicates
 - (5) Collected mosquitoes from week one to week five
 - b) Data collected
 - (1) Counted
 - (2) Identified as to sex and species
 - (3) Physiological status determined
 - (4) PCR assays to help with identification
 - c) Preliminary results
 - (1) AGO trap was highly specific for target species
 - (2) 88% were Gravid
 - (3) Mean yield was 0.84 mosquitoes per trap per week
- 5. Future plans
 - a) Large scale trials
 - b) Can AGO act as a vector sink in LAC endemic areas?
- V. A Meta-Evaluation (Phase 1) of a Mosquito-Borne Disease Program Thomas Kollars
 - A. Conceptually, a meta-analysis uses a statistical approach to combine the results from multiple studies in an effort to increase power (over individual studies), improve estimates of the size of the effect and/or to resolve uncertainty when reports disagree (https://en.m.wikipedia.org/wiki/Meta-analysis).
 - *B.* Resource <u>http://www.medicine.ox.ac.uk/bandolier/painres/download/whatis/meta-an.pdf</u>
 - C. Basis for evaluation
 - 1. Based on Tech Bull FCMA 8:20-23, 2008 paper by Chatham County
 - 2. Personal interviews
 - 3. Examination of archival data
 - 4. Analyzed data
 - D. Four phases to a meta-analysis (http://omerad.msu.edu/ebm/Meta-analysis/Meta3.html)
 - 1. Identification
 - 2. Selection
 - 3. Abstraction
 - 4. Analysis
 - E. Phase one Formative Evaluation
 - 1. Document internal validity of the program
 - 2. A comprehensive WNV program was in place in 2003
 - 3. A comprehensive review of the program was done in 2003
 - a) Discontinued sentinel chicken program for WNV

- b) Used historic data to place traps
- c) Changed adulticiding applications
- d) Control based on vector numbers, not WNV status
- 4. Statistical analysis between pre and post program change
 - a) Is this program component useful
 - b) Have changes improved the program
 - c) What else needs to be changed
 - d) Cost-benefit analysis
- F. The search for predictors
 - 1. What birds are involved?
 - 2. Socioeconomic factors
 - *3.* Model indicates that ~54 positive pools leads to increased risk of human disease; however, the predictive value is not high
- G. Conclusions
 - 1. Feasibility
 - 2. Acceptability/Fidelity
 - 3. Process evaluation
 - 4. Qualitative evaluation
 - 5. Quantitative impact/outcome
- H. Future -
 - 1. Continue with meta-analysis
 - 2. Extrapolate to other programs in Georgia
- I. Resources
 - 1. <u>http://www.ccace.ed.ac.uk/research/software-resources/systematic-reviews-and-meta-analyses</u>
 - 2. http://www.pitt.edu/~super7/19011-20001/19431.ppt
 - 3. <u>http://www.stat-help.com/meta.pdf</u>

Board meeting

- I. Board Members 2015-2016
 - A. President Jeff Heusel
 - B. VP Kenna Graham
 - C. Members
 - 1. One year Joey Bland
 - 2. Two year Steve Pavlovich
 - 3. Three year Allen Hillman
 - D. Industry Rep Trey English
 - E. Past President Alan Gaines
 - F. Extension Rep Elmer Gray
 - G. Public Health Rep Rosmarie Kelly
- *II.* Sustaining members
 - A. 10 members this year
 - B. Funding from ADAPCO
- III. Treasurers Report
 - A. Net loss for this year
 - *B.* Still have a healthy bank account
- IV. 2016 Annual Meeting Oct 12-14