GMCA Annual Meeting Oct 12-14, 2016

Wednesday

Session 1

- I. Washington Day Update Rosmarie Kelly
- II. Thermal Fogging and Barrier Sprays Joe Andrews
 - a. Caribbean model
 - b. ZIKV outbreak
 - i. Backyard spraying may be necessary
 - ii. Mosquitoes are daytime biters
 - iii. Spray cloud needs to linger and move around obstacles
 - iv. Conditions and equipment are key
 - c. Inversions
 - i. Temperature difference between air and ground
 - 1. Air near ground cooler
 - 2. Air 20-30 feet above ground warmer
 - 3. Can occur in heavily shaded yards
 - ii. Thermal fogger
 - 1. Good penetration
 - 2. Wider swath width
 - 3. Lingers longer
 - 4. Uses more product
 - iii. Adulticiding
 - 1. Smaller droplets/less product
 - 2. Barriers impede spread
 - 3. ~300' spray swath
 - iv. Keep good records
 - d. Barrier spray
 - i. Types of companies
 - 1. One-man company
 - 2. Franchises
 - 3. Misting systems
 - a. Can be helpful
 - b. There are downsides
 - 4. Barrier sprays
 - a. Apply to harborage areas
 - b. Perimeter treatments
 - c. Lots of different products
 - d. 20-30 day residual
 - e. Labels are changing pollinator protection
 - ii. Factors to consider
 - 1. Obstacles
 - 2. Environmental factors

- 3. Keep good records
- III. The Commercial Applicator's Response to ZIKV Jeremiah Lewis
 - a. Gregory Pest Control
 - i. 1972
 - ii. 8th largest in coverage area in US
 - iii. Extensive experience in mosquito control
 - iv. Integrated response
 - 1. Surveillance
 - 2. Larvicide focus
 - 3. Variable depending on situation
 - b. ZIKV
 - i. Focus on education
 - ii. Lots of hype and misinformation out there
 - iii. Response
 - 1. Increase in commercial contracts
 - 2. Increase in comprehensive services
 - a. College
 - b. State/county
 - 3. Only slight increase in residential contracts
 - 4. Some requests for specific services
 - a. Surveillance
 - b. Larviciding
 - c. Education
 - i. ZIKV
 - ii. Basic mosquito control
 - 5. A few contingency contracts
 - 6. Many chose to do nothing
 - iv. Challenges
 - 1. Tolerance levels for mosquitoes has decreased
 - 2. Issues
 - a. Resident practices
 - b. Construction zones
 - c. Types of containers
 - 3. Applicator can't always correct the issues education needed
- IV. Evaluating the Effects of Temperature Variation on Arboviruses Blanka Tesla
 - a. There are some key knowledge gaps in predicting ZIKV transmission potential
 - i. Temperature
 - ii. Seasonality
 - iii. Extrinsic incubation period
 - b. Why is dose important
 - i. Asymptomatic infections are generally considered dead end infections
 - 1. Not true in dengue (PNAS 2015: 112)
 - 2. About 70% of ZIKV infections are asymptomatic
 - ii. How does viremia affect ZIKV transmission?

- c. Why is temperature important?
 - i. Transmission in dengue is temperature dependent
 - ii. What about ZIKV?
- d. Study
 - i. Aims
 - 1. Characterize vector competence
 - 2. Extrinsic incubation period
 - 3. Virus dose viremia
 - ii. Virus dose effect
 - 1. Varied amount of virus inoculated
 - 2. Looked at:
 - a. Vector competence
 - i. Infected number of positive mosquitoes
 - ii. Infectious number of mosquitoes with positive saliva
 - b. Survival
 - c. Extrinsic incubation period
 - d. Transmission efficacy
 - i. Disseminated # heads positive for virus
 - ii. Infectious
 - 3. Use data to generate a vectorial capacity equation
 - 4. Results
 - a. Significant difference between dose and survival
 - b. Dose affects the proportion of infected and infectious mosquitoes
 - c. Dose does not affect virus dissemination
 - d. Dose does affect transmission efficiency
 - e. Dose has an effect on viral dynamics
 - 5. Conclusions
 - a. Variations in viremia cause different pathogen-host dynamics
 - b. Changes in temperature can influence:
 - i. Extrinsic incubation period
 - ii. Vector competence
 - iii. Mosquito survival
- V. Zika Virus Daniel Lindsey
 - a. Virology
 - i. Positive sense single stranded RNA virus
 - ii. Flaviviridae
 - iii. 3 lineages
 - 1. East African
 - 2. West African
 - 3. Asian
 - b. Transmission

- i. Vectors
- ii. Sexual
- iii. Blood transfusion
- iv. Congenital infection of fetus
- v. Possibilities
 - 1. Saliva and other bodily fluids
 - 2. During child delivery
 - 3. During breast feeding
 - 4. Organ transplant
- c. Symptoms
 - i. Acute
 - 1. Varied
 - a. Fever
 - b. Rash
 - c. Other
 - 2. Not all occur every time
 - ii. Guillain-Barre Syndrome
 - iii. Fetus
 - 1. Neurological defects
 - 2. Ocular abnormalities
 - 3. Joint abnormalities
 - 4. Termination
- d. Diagnosis
 - i. Complex
 - ii. Evolving
 - iii. 2 different avenues
 - 1. Molecular
 - 2. Antibody
 - iv. Need to rule out other flaviviruses
- e. Treatment
 - i. Acetaminophen pain relief
 - ii. Do not take aspirin until dengue is ruled out
 - iii. Rest
 - iv. Hydration
- f. Prevention
 - i. Primarily vector control
 - 1. Surveillance is key
 - 2. Discontinuity across areas is problematic
 - ii. Effective control requires a combined approach with community involvement
 - iii. Education especially important to deal with alternate transmission routes
 - iv. Blood donation testing
- g. Future outlook
 - i. Vaccine development

- 1. At least 3 vaccines have entered phase I clinical trials (of three)
- 2. FDA approval takes from 9 months to 2 years
- ii. Funding
 - 1. CDC funds were exhausted in September
 - 2. Funding requested in February finally approved in Oct
- VI. Industry spotlight
 - a. Central Life Sciences Zane McCallister
 - i. New product coming out soon
 - ii. Bti-Altosid mix
 - b. Clarke Joe Strickhouser
 - i. Natular DT
 - ii. Container breeder tablets
- VII. Update: Mosquito Surveillance Program in Richmond County, Georgia Kelsey Laymon
 - a. Phinizy Center
 - i. Working with Richmond County for ~3 years
 - ii. 3 routes
 - iii. 15 trap sites
 - b. Collect data for targeted mosquito control
 - i. Viral testing
 - ii. Plan to identify activity patterns
 - iii. Plan to look at environmental factors affecting mosquito populations
 - c. Wetland is trapped weekly as a control
 - d. Sites vary in abundances
 - i. South route has high abundances
 - ii. North route abundances are much lower
 - e. Activity
 - i. April to October
 - 1. Primary peak: May-June
 - 2. Secondary peak: Sept-Oct
 - ii. Get some mosquitoes every month of the year
 - iii. Early winter typically has fewest mosquitoes
 - f. Diversity
 - i. Number of species ranged from 6-25
 - ii. Average is 17.8 species per site
 - iii. Menhinick Diversity Index the ratio of the number of taxa to the square root of sample size
 - (http://www.colby.edu/biology/BI131/Lab/Lab09CalcBiodivers.pdf)
 - iv. Shannon Wiener Index counts for both abundance and evenness of the species present (<u>https://www.easycalculation.com/statistics/learn-shannon-wiener-diversity.php</u>)
 - g. Larval habitats
 - i. Grassland pools
 - ii. Artificial containers
 - iii. Freshwater swamps

- iv. Woodland pools
- h. Species and abundances can change over time
- i. Uranotaenia lowii
 - i. Feeds on frogs and toads
 - ii. Abundances have increased
 - iii. Primarily southern and coastal
 - iv. Most prevalent during the Fall
- j. Land use
 - i. Primarily urban areas
 - ii. Sites near less developed areas have highest number of species
 - iii. Jaccard Similarity -
 - 1. <u>http://ag.arizona.edu/classes/rnr555/lecnotes/10.html</u>
 - 2. Looked at least similar and most similar land use types and species found there
- VIII. Effects of Latitudinal Variation on Aedes albopictus Life History Traits Kerri Miazgowicz
 - a. Temperature is an important driver of mosquito-borne disease transmission
 - i. Affects mosquito traits
 - ii. Affects pathogen traits
 - b. Temperature alone does not capture all the variation
 - c. Models
 - i. A mechanistic model assumes that a complex system can be understood by examining the workings of its individual parts and the manner in which they are coupled. Mechanistic models typically have a tangible, physical aspect, in that system components are real, solid and visible.
 - d. Factors affecting mosquito-borne disease transmission
 - i. Mosquito traits
 - ii. Pathogen traits
 - iii. Human traits
 - iv. Environmental traits
 - e. Study
 - i. Objectives
 - 1. Asses variation
 - 2. Look at local adaptation
 - 3. Quantify variability
 - 4. Create a transmission risk map
 - ii. Mosquito collection sites
 - 1. Southern range
 - 2. Mid-range
 - 3. Northern range
 - iii. Collected mosquito larvae
 - 1. 9 cities
 - 2. 4 sites in each
 - 3. 5 containers at each site
 - iv. Reared mosquitoes in a semi-field enclosure

- 1. Proportion of adults emerging
- 2. Time to emergence
- 3. Daily mortality
- 4. Number of eggs laid
- 5. Number of females who blood fed
- v. Monitored temperature, water temperature, and light
- vi. Outcome local vectorial capacity
- f. Data from Georgia
 - i. Data loggers
 - 1. Average daily temperature 25.2 degrees Celsius
 - 2. Average humidity 82%
 - ii. Emergence
 - 1. Northern population had lowest emergence rate
 - 2. Mid and south were similar
 - iii. Bite rate
 - 1. Northern population had a lower bite rate
 - 2. Bite rates across all populations were relatively low
 - iv. Fecundity
 - 1. Southern populations had the highest reproduction rates
 - 2. Northern population laid no eggs during study
 - v. Survival was similar over all though southern population had a slightly higher rate
 - vi. Wing length (measure of size) showed no overall difference
 - 1. Fecundity was not predicted by body size in this study
 - 2. Body size varied more in northern population
- g. Conclusion
 - i. Southern population most fit in southern latitude
 - ii. Indicator of local adaptation?
- IX. Microclimate and Wild Mosquitoes in Athens, GA Michelle Evans
 - a. The geographic distribution of mosquito-borne diseases lines up with disease transmission
 - i. Most temperature is taken from satellite data
 - ii. There is a scale mismatch which can add to errors in risk determination
 - iii. A finer scale is needed to determine disease risk
 - b. Temperature and mosquito traits
 - i. Unimodal
 - ii. Mordecai et al, 2012
 - c. Urban microclimate
 - i. Does it impact mosquito traits?
 - ii. Does it impact disease risk?
 - d. Experimental design
 - i. 9 sites
 - ii. Type based on amount of impervious surface
 - 1. Urban

- 2. Suburban
- 3. Rural
- iii. Reared larvae at sites
 - 1. Brought adults to lab and infected them with dengue virus
 - 2. Looked at dissemination of virus
- iv. Logged temperature at each site
- e. Results
 - i. Wing length
 - 1. Urban mosquitoes were larger
 - 2. Rural and suburban mosquitoes were of similar size
 - ii. Emergence
 - 1. Urban mosquitoes emerged sooner
 - 2. Fewer urban mosquitoes emerged
 - iii. Infections
 - 1. Urban sites had a lower infection rate
 - 2. No clear trend in infectiousness
 - 3. Between 0-25% infectious by site
- f. Broader picture
 - i. No real clear trend
 - ii. Urban mosquitoes had
 - 1. Lower emergence rates
 - 2. Higher fecundity rates
- g. Still looking at Fall data temporal effects

Thursday

Session 2

- I. UGA Entomology Department Update Kris Braman
 - a. Core areas
 - i. Urban pest management
 - ii. Systematics and Evolutionary Biology
 - iii. Insect Host-Pathogen Relationships
 - iv. Vector Biology and Management
 - v. IPM/Applied Insect Ecology
 - vi. Wetland Ecology/Aquatic Entomology
 - b. Research, Extension, and Education
 - i. Both undergrad and graduate programs
 - ii. Strength in research and education
 - c. Newly designed web page launching before end of year (FACES)
 - d. Vision for the future
 - i. Balance between basic and applied
 - ii. Looking at emerging priorities
 - 1. Agriculture
 - 2. Industry
 - iii. Rapid response to new challenges

- iv. Departmental balance may become an issue
 - 1. People will be retiring
 - 2. Need to recruit a new generation of entomologist
- e. Strategies
 - i. Distance learning options
 - ii. Manage program needs and program offerings
 - iii. Grow external funding
 - iv. Maintain research and education balance
 - v. Grow the entomology and applied biotechnology undergrad majors
 - vi. Grow graduate programs
 - vii. Provide research experience to all students internships
- II. Eprinomectin, Anopheles, and Cattle: Furthering Zooprophylaxis Tactics to Control Malaria Annie Rich
 - a. Local malaria vector Anopheles quadrimaculatus
 - b. History of malaria
 - i. 1526 Spanish colonization brought malaria parasites to the US
 - ii. 1820s drainage to fight malaria
 - iii. 1850s malaria is the principle disease in the US
 - iv. 1901 Laveran & Ross discoveries became commonplace knowledge
 - v. 1925 Paris Green and oils used as larvicide said
 - vi. 1939 DDT
 - vii. 1942 CDC precursor (Malaria Control in War Areas)
 - viii. 1947 National Malaria Eradication Program
 - c. History of Georgia
 - i. 1735 Georgia founded
 - ii. Late 1700s town of Ebenezer abandoned because of malaria
 - iii. 1806 capitol moved due to malaria
 - iv. 1939 Emory Field Station founded to research malaria
 - v. 1946 CDC founded
 - d. Study
 - i. Current control measures
 - 1. Prophylactic drugs
 - 2. Bed nets
 - 3. Mosquito control
 - ii. New measure zooprophylaxis
 - 1. Non insecticidal
 - a. Provide alternative host
 - b. Draw vector away
 - 2. Insecticidal
 - a. Working on a long range treatment
 - b. Eprinomectin
 - i. Injectable wormer
 - ii. 150 days of control of parasites
 - 1. Internal parasites

- 2. Live
- iii. Used as a rotation option
- c. Objective
 - i. Does it kill mosquitoes when they feed?
 - ii. How long
 - iii. Sub lethal effects
- iii. Mortality study
 - 1. Procedure
 - a. Draw cattle blood
 - b. Mix with drug
 - c. Feed to mosquitoes
 - 2. Total mortality at 48 hours at all dose levels
- iv. Field study (ongoing)
 - 1. Inject cattle with drug
 - 2. Attach mosquito feeding stations to cows
 - 3. Draw blood to determine tiger of drug
- III. CDC: VBD Regional Centers for Excellence Proposal Status Elmer Gray
 - a. FOA released in early August
 - i. Estimated number of awards 5
 - ii. Estimated total program funding \$50,000,000
 - 1. \$10,000,000 per center
 - 2. Spread over 5 years
 - 3. University overhead taken from this
 - b. Purpose
 - i. Build collaboration
 - ii. Provide training
 - iii. Conduct research
 - c. Sept 12
 - i. Final RFA
 - ii. Due date 10/13
 - iii. Got an extension of a week due to the hurricane
 - d. Known partners
 - i. Regional participants
 - 1. Georgia
 - a. Chatham County
 - b. DeKalb County
 - c. Valdosta State
 - d. Georgia Southern
 - e. GDPH
 - 2. South Carolina DHEC
 - 3. Alabama
 - a. Vector Management Society
 - b. City of Huntsville
 - c. City of Mobile

- d. Baldwin County
- e. Alabama DPH
- 4. Florida Vero Beach Med Ent Lab
- 5. Puerto Rico
- ii. Extension Services
 - 1. GA
 - 2. FL
 - 3. AL
 - 4. SC
 - 5. PR
- iii. Many more
- e. Specific aims
 - i. Region-wide best practices
 - 1. Training
 - 2. Education
 - ii. Develop a strong cadre of vector control specialists
 - iii. Promote best management practices (IMM)
 - 1. <u>http://www.mosquito.org/assets/Resources/PRTools/Resources/</u> <u>bmpsformosquitomanagement.pdf</u>
 - 2. http://floridamosquito.org/App_Docs/Products/FMCA_BMPs.pdf
 - iv. Surveillance at local, state, and regional levels
 - 1. Vector surveillance
 - a. Vector abundance and distribution
 - b. Pathogen prevalence
 - 2. Insecticide resistance
 - 3. Web platform development to improve data collection and analytics
 - 4. Trap evaluation
 - v. Support research
 - vi. Training
 - 1. Multilayer approach
 - a. Fundamental training for mosquito control
 - b. Train the trainer
 - c. Specialty training
 - d. Continued education
 - 2. Public education and relations focus on school programs
 - 3. Graduate and post-doctoral training for specialists
 - vii. Novel approaches
 - 1. Entomophagous fungi
 - 2. Ovitraps
 - 3. Region wide arbovirus surveillance
- f. Summary
 - i. Generate knowledge
 - ii. Enhance training, surveillance, and control

- iii. Generate data for risk assessment and intervention decisions
- IV. ZIKV Epidemiology Amanda Feldpausch
 - a. This is an evolving response
 - b. History
 - i. Large outbreak started in 2015 in Brazil
 - ii. Large outbreak in Singapore staring in Aug 2016
 - iii. Nationally
 - 1. 105 locally acquired reported to CDC as of Oct 5
 - 2. Travel associated cases reported 3712
 - 3. Lab acquired case 1
 - 4. 30 sexually transmitted
 - iv. Florida
 - 1. Local transmission began in mid-June 2016
 - a. Wynwood area of Miami
 - b. Miami Beach
 - 2. Zones
 - a. Transmission occurring red
 - b. Cautionary travel guidance still in place yellow (no new case in 45 days)
 - c. Pregnancy registry
 - i. 837 women enrolled
 - ii. Tracks adverse outcomes up to 12 months of age
 - iii. Results to date
 - 1. 22 live born infants with birth defects
 - 2. 5 pregnancy losses
 - d. Transmission
 - i. Mosquito
 - 1. Viremia period is first 7-10 days of illness
 - 2. Extrinsic incubation period is 7-10 days
 - ii. Intrauterine
 - iii. Sexual transmission
 - 1. Mostly male to female
 - 2. Some male to male
 - 3. Some female to male
 - iv. Lab exposure
 - v. Blood transfusion possible but not confirmed
 - vi. Breast milk or organ donation has not been confirmed
 - e. Clinical picture
 - i. Incubation period is 3 days to 2 weeks
 - ii. 1 in 5 people infected become ill
 - iii. Symptoms
 - 1. Rash ~85% of time
 - 2. Fever
 - 3. Joint pain

- 4. Conjunctivitis
- iv. Tends to be a mild, self-limiting disease in most adults
- v. Severe outcomes
 - 1. Guillain-Barre Syndrome (GBS)
 - a. Less than one percent of cases
 - b. Link is not yet definitive
 - 2. Neuropathic issues
 - 3. Pregnancy outcomes
 - a. Microcephaly link is confirmed
 - b. Other severe pregnancy outcomes have been documented but not confirmed
- f. Surveillance goals
 - i. At risk population pregnant women
 - ii. Document travel-associated cases to monitor spread
 - iii. Roles
 - 1. Facilitate lab testing
 - 2. Follow up on suspected cases
 - 3. Education on mosquito avoidance
 - iv. Testing
 - 1. RT-PCR: symptomatic
 - 2. PRNT done after IgM positive
 - 3. Understanding results
 - a. IgM just tells you that you were infected with a flavivirus
 - b. ~50% of IgM positives in Georgia are not ZIKV
- g. Epidemiology definition http://dph.georgia.gov/zika
 - i. Testing
 - 1. Symptomatic
 - a. Joint pain
 - b. Conjunctivitis
 - c. Maculopapular rash
 - 2. Priority for testing pregnant women with symptoms or exposure
 - 3. Also need to evaluate for CHIK and DEN
 - 4. Where sexual transmission is a possibility, both partners are tested
 - ii. Everything evaluated on a case by case testing
 - iii. Follow up for vector surveillance
- h. Local transmission
 - i. Symptomatic
 - ii. No travel history
 - iii. Absence of more likely diagnosis
 - iv. No chance of sexual transmission
- i. Data
 - i. Triaged
 - 1. 1700 clinical calls

- 2. 4000 general inquiries
- ii. Testing over 1100 persons
- iii. Documented 90 travel-related cases
 - 1. 65% in metro Atlanta
 - 2. This is likely a case of surveillance bias is
- iv. Education
 - 1. Tip and toss
 - 2. Sexual transmission 6 months
 - 3. Avoid mosquitoes for 3 weeks after possible exposure
- j. ZAMS
 - i. ZIKV active monitoring system
 - ii. Through SENDSS
- k. Community campaign
 - i. Travel airport
 - ii. Tip and toss
- I. Take home message
 - i. Reduce risk to pregnant women
 - ii. Reduce risk of local cases
 - iii. Still lots of unknowns
- V. Industry spotlight
 - a. Bayer Gordon Morrison
 - i. Business
 - 1. Manufacturing
 - 2. R&D
 - 3. Sales
 - ii. Looking to acquire Monsanto
 - iii. Latest new products
 - 1. DeltaGuard EW
 - a. Deltamethrin
 - b. Type 2 pyrethroid
 - c. Wide area mosquito control
 - d. Reduced risk product
 - i. No PBO
 - ii. Water based
 - 2. Formulation emulsion in water (EW)
 - a. Droplet integrity
 - b. Good coverage
 - iv. Videos link on website
 - b. Curtis Dyna-Fog Claude Thomas
 - i. Bought B&G
 - ii. Equipment
 - 1. Thermal fogger
 - a. Various sizes
 - b. Also a water-based fogger

2. ULV units of various sizes

Third session

- I. College of Agricultural and Environmental Sciences Update Dean Sam Pardue
 - a. Start with Why Simon Sinek
 - i. The golden circle
 - ii. Need to understand why you do things
 - b. Why does agriculture matter
 - i. By 2050, the human population is projected to exceed 9 billion
 - ii. A 50% increase in food production will be needed by 2030
 - iii. Issues
 - 1. Projected water scarcity in 2025
 - 2. Roughly 1/3 of world's population
 - 3. Agriculture uses 70% of all water consumption
 - c. Crisis driven funding
 - i. A crisis creates funding
 - ii. Food crises
 - 1. Obesity
 - 2. Diabetes
 - 3. Food insecurity
- II. Pollinator Update Gordon Morrison
 - a. Pesticide issues
 - i. CNIs and bee kills
 - 1. Seed treatments with neonictinoids
 - a. Originally was a very dusty product
 - b. Currently products bind much better to the seeds
 - 2. Use less pesticide when crops are growing
 - ii. Bee kills and mosquito control
 - 1. ULV sprays can kill bees
 - 2. Puts mosquito control in a negative light
 - 3. Also puts pesticide companies in a negative light
 - b. Bee Care Center
 - i. Research Triangle Park, NC
 - ii. Look into problems causing mortality in bees
 - c. LSU Study
 - i. Methods
 - 1. Caged studies
 - 2. Bees of different ages
 - 3. Several different pesticides tested
 - ii. Results
 - 1. Did not see high mortality in bees
 - 2. Saw no difference in adverse health outcomes in bees
 - d. Trends across the continents
 - i. The Americas are at about steady state for bee hives

- ii. Winter loss rates haven't changed
- iii. Annual loss is problematic
- e. Why are bees dying?
 - i. Varroa mites
 - ii. Tracheal mites
 - iii. Hive beetles
 - iv. Disease
 - v. Nutrition
 - vi. Bee keeping practices
 - 1. Professionals
 - 2. Hobbyists
 - vii. Pesticides
 - viii. Genetic weakness
- f. Actions to promote pollinator protection
 - i. 2015 order
 - ii. Reduce honey bee losses to 15% or less
 - iii. Increase monarch butterfly populations
 - iv. Restore pollinator habitat
 - v. Key EPA actions to protect pollinators
 - vi. Draft ecological risk assessment to be released Oct 2016
 - vii. Looking at organophosphate and pyrethroids
- g. State Managed Pollinator Protection Plans
- h. Bee helpful
 - i. Communicate real problem
 - ii. Prepare a fact sheet
 - iii. Establish a relationship with local apiary specialist
 - iv. Seek out local beekeepers
 - v. Develop a list of bee colonies
 - vi. Notify beekeepers of treatments
- i. What's next
 - i. Honest discussions
 - ii. Continue to plan and develop Vector Control BMPs
 - iii. Regulations need to be based on science
- III. Safety First When Applying Pesticides Mickey Taylor
 - a. Why are pesticides dangerous?
 - i. They are all poisons
 - ii. Advantages
 - 1. Fast
 - 2. Easy to use
 - 3. Effective
 - iii. Disadvantages
 - 1. Can cause harm to non-targets
 - 2. Can harm the environment
 - b. Responsibilities

- i. Protect yourself and others
- ii. Protect the environment
- iii. Follow the label
- iv. Keep a spill kit where you mix or handle pesticides
- c. IMM
 - i. Using multiple tactics in an overall plan to control mosquitoes
 - ii. Includes:
 - 1. Surveillance and ID
 - a. Knowing the problem helps determine the best control means
 - b. Set an action threshold
 - i. Trap data
 - ii. Complaints
 - iii. Arboviral testing
 - c. Action thresholds vary by species, site, weather, public tolerance, and season
 - 2. Habitat modification
 - 3. Vegetation management
 - 4. Biological control
 - 5. Mechanical barriers
 - 6. Chemical control
 - 7. Public education
 - 8. Arboviral testing
 - iii. Goals
 - 1. Prevention
 - 2. Suppression or reduction
 - 3. Eradication or elimination
- d. Using pesticides
 - i. Identify target
 - ii. Identify susceptible life stage
 - iii. Use the lowest rate that kills the mosquitoes
 - iv. Rotate modes of action frequently
 - 1. Systemic
 - 2. Contact
 - 3. Selectivity
 - a. Broad spectrum
 - b. Target only certain species
 - c. Residual
- e. Resistance
 - i. More likely to develop is population is high
 - ii. Switch modes of action frequently more often that once a year
 - iii. Rotate between larvicide and adulticides
 - iv. Pesticides
 - 1. Bacillus sphaericus

- a. Resistance has developed
- b. Mix with anti to reduce resistance
- 2. Bti
- a. No resistance
- b. Works best in clean water
- 3. Spinosad
- 4. Methoprene
 - a. Resistance has developed
 - b. Combine with Bti to regain some susceptibility
- f. Pesticide safety
 - i. Read the label
 - 1. These are laws, not guidelines
 - 2. Do not burn or bury the container
 - 3. Triple rinse
 - ii. Store correctly
 - 1. No unauthorized access
 - 2. Secure during all phases of work
 - 3. Use sturdy plastic or metal shelves
 - 4. Store heavy materials and liquids below, dry products above
 - iii. Handle correctly
 - 1. Clearly mark containers
 - 2. Use accurate measuring devices
 - 3. Stay upwind
 - 4. Pour below eye level
 - iv. PPE
 - 1. Determined by toxicity, formulation, and activity
 - 2. Listed on label
 - 3. Wear nonabsorbent materials
 - v. Protecting water supply
 - 1. Keep water pipe or hose well above pesticide
 - 2. Use a 100' setback

IV. GovPilot – Sandy Lyna

- a. <u>https://govpilot.com</u>
- b. Mosquito control application
 - i. Crowd sourcing to determine mosquito issues
 - 1. Mobile app GovAlert
 - a. Geolocator
 - b. Can also take a picture and add a description
 - 2. Online form
 - ii. Creates an order sent to mosquito control
 - 1. Email sent to reporter
 - 2. Email sent to person responsible to follow up
- c. GovPilot
- d. Opens to a map of area of concern

- i. Message center each record
 - 1. Form
 - a. Treatment used
 - b. Action taken
 - c. Notes
 - d. Other this is flexible
 - 2. Assessor info
 - 3. Other complaints from site
- ii. Automated work flow
- iii. Interactive mapping
- iv. Can tie into other agencies
- v. Can send record to other people or agencies to be dealt with
- V. Environmental Health Strike Teams Chris Kumnick
 - a. EHS workforce
 - i. 20 State employees
 - ii. 18 EH Directors
 - iii. 386 county EHS
 - b. Public Health Entomology
 - i. Entomologist
 - ii. New vector surveillance staff
 - 1. May 16, 2016 start date
 - 2. 2 weeks of training
 - 3. Out to regions June 1, 2016
 - iii. Responsibilities
 - 1. Collecting baseline data
 - 2. Education
 - c. ZIKV ConOp
 - i. Multi-level approach
 - ii. Multi agency
 - d. Strike Teams
 - i. Number of EHS has dropped as population has grown
 - ii. Need 125 more EHS just to meet current needs
 - iii. Staff is aging
 - iv. Disaster management
 - 1. Function within the Incident Command System
 - 2. Fall under ESF8 in the National Incident Management System
 - 3. Disaster cycle
 - a. Preparation
 - b. Response
 - c. Recovery
 - d. Mitigation
 - 4. EHS response
 - a. Mass feeding facilities
 - b. Mass shelter facilities

- c. Water interruptions
- d. Portable sanitation
- e. Solid waste management
- f. Vector and rodent control
- g. Situational awareness
- 5. Mass fatality coordination EHS works with State coroner
- 6. EHS Strike Teams
 - a. Help in situations where EH is understaffed
 - b. Listed as a resource for the ICS
 - c. Regional team coordination 5 regions
 - d. Yearly training
 - e. EHS
 - i. Trained and credentialed
 - 1. Registered environmentalist
 - 2. EHS and EPR standard training
 - 3. EHTER and EHTER Ops
 - 4. FEMA NIMS/ICS
 - 5. Shelter inspection
 - 6. Outbreak/Epi investigation assistance
 - ii. Additional training
 - 1. WebEOC
 - 2. FEMA training through EMI
 - 3. Radiation training
 - iii. Prepared to deploy
 - 1. Report to Incident command post
 - a. Check in
 - b. Report to team leader
 - 2. Perform assigned tasks

- e. Issues
 - i. Potable water
 - ii. Waste water
 - 1. Public sewers
 - 2. Septic tanks
 - iii. Portable sanitation systems
 - iv. Refuse and pest control
 - 1. Flies
 - 2. Mosquitoes
 - 3. Rats
 - v. Shelters
 - 1. Waste disposal
 - 2. Food and mass feeding locations
- f. ZIKV response
 - i. Levels
 - 1. Pre-Incident

- a. Preparedness
- b. Mosquito season
- 2. Suspected/confirmed incident
- 3. Incident/response
- ii. ConOp (Conception of Operation) plan
 - 1. Incident command Epidemiology
 - 2. VSC and EH Emergency Strike Teams
 - 3. Contingency contracts
 - 4. Work with local partners in focused area
 - 5. Scalable response
- VI. Industry Spotlight
 - a. Target Specialty Products Vima Saenz
 - b. UNIVAR Julie Fogg/Jason Conrad
 - c. AllPro Joe Andrews/David Sykes
- VII. So What Else Happened in 2016? Rosmarie Kelly

Friday

Session 4

- I. A Termite Researcher's Opinion on Surveillance and Management of *Aedes albopictus* in the Georgia Piedmont Brian Forschler
 - a. Tiffany Nguyen's research
 - b. First study adult sampling
 - i. Sampling methods
 - 1. CDC light trap
 - a. No dry ice
 - b. Dry ice
 - 2. Net
 - 3. Gravid trap
 - 4. Vacuum
 - ii. Sampling on campus at a courtyard
 - 1. Garbage can
 - 2. Clogged drain got fixed last year of study
 - 3. Ash trays
 - 4. Old trees
 - iii. Species
 - 1. 7 different species
 - 2. 90% albopictus
 - 3. Changes in 3 years
 - a. Drop in species probably breeding in clogged drain
 - b. Species that flew in stayed fairly consistent
 - 4. Seasonality
 - iv. Traps
 - 1. Varied by trap used
 - 2. Varied by species

- 3. Varied by year
- c. Second study residential mosquito control
 - i. Shadowed to pest control companies
 - ii. Methods
 - 1. Pyrethroids
 - 2. 30 total houses treated
 - 3. 23/24 control houses
 - 4. Treated once a month
 - 5. Sampled twice a month with vacuum
 - 6. July Oct
 - 7. 2014-2015
 - iii. Mosquito habitats
 - 1. Plant saucers biggest problem
 - 2. Random stuff in yards
 - 3. Storm drains
 - iv. Results
 - 1. 2014
 - a. Treated 2
 - i. Technician issue
 - ii. That technician left after 2015
 - b. Control 8
 - 2. 2015
 - a. Treated 0
 - b. Control 5
 - v. Survey
 - 1. All houses filled out survey
 - 2. Most interesting response had to do with tolerance
 - a. Treated houses had no mosquito tolerance at all
 - b. Control houses had lots of tolerance for mosquitoes or did not want their yards sprayed
- d. Efficacy study
 - i. Methods
 - 1. Houses around campus
 - 2. 2014 9 houses treated
 - 3. 2015 15 houses treated
 - 4. Products
 - a. 2014 pyrethroids
 - b. 2015 added natural 25b products
 - ii. Results
 - 1. 2014
 - a. Only 30% of houses had any mosquitoes
 - b. Numbers were low
 - 2. 2015
 - a. Very few mosquitoes

- b. Natural products didn't appear to work
- e. Results
 - i. Backpack mister treatments were effective as long as larviciding was also part of the regime
 - ii. 25b products did not really work at all
 - iii. Vacuum device was a useful tool for mosquito sampling on vegetation
 - iv. Residuals
 - 1. Plant type
 - 2. Applicator
- f. Comment (Gordon Morrison) mosquitoes appear to be found primarily in shaded areas, so applying barrier spray only in these areas could reduce amount of pesticide being used
- II. Identification of Semiochemicals Attractive to Simulium vittatum (IS -7) Gui Verocai
 - a. Background
 - i. Important nuisance pest
 - ii. Economic impact
 - iii. Vectors
 - 1. Viruses
 - 2. Parasites
 - a. Onchocera filariasis worm
 - i. Species in North America found in:
 - 1. Cattle
 - 2. Dogs and cats
 - 3. Wild ungulates
 - ii. Human disease in tropical areas
 - b. http://www.cdc.gov/parasites/onchocerciasis/disease.htm
 - b. Objective search for compounds attractive to black fly
 - c. Methods
 - i. Use host seeking females
 - 1. Reared at UGA
 - 2. Allowed to lay first batch of eggs
 - ii. Visually attracted to certain colors and shapes
 - iii. Organic volatile compounds (58)
 - 1. Different chemical classes
 - 2. Attractive to hematophagous dipterans
 - 3. Isolated from potential mammalian hosts
 - a. Breathe
 - b. Hair
 - c. Skin
 - d. Sweat
 - iv. Electroantennography
 - 1. Measured electric response to stimuli
 - 2. 11 groups of 5-7 compounds

- v. Statistical analysis
 - 1. EAG responses normalized to octanol
 - 2. One-way ANOVA
- d. Results
 - i. 7 out of 58 compounds were attractive
 - ii. Followed up with a behavioral assay using a Y-tube olfactometer
 - 1. 6 groups of 20 black fly
 - 2. Dilutions of the 7 compounds
 - 3. Dark environmental room
 - 4. Stimulus and control chambers
 - 5. Light and air source at end
 - 6. Results
 - a. 5 compounds were attractive
 - b. Mostly at lower concentrations
- e. Conclusions
 - i. Few simuliids tested for attraction of compounds
 - ii. Future studies
 - 1. Need to test compounds in the field
 - a. Encephalitis Virus Surveillance (EVS) trap
 - b. Esperanza Window Trap (EWT)
 - 2. Select most attractive compounds/blends
 - a. Population suppression
 - b. Surveillance of pathogens
 - 3. Paper will be out soon
- III. A New Approach to Stormwater Management Fred Koehle
 - a. Background
 - i. Stormwater fee/tax passed
 - ii. Stormwater issues have not been addressed for many years
 - iii. Mosquito issues and stormwater issues go hand in hand
 - b. Richmond County detention ponds
 - i. County & school board
 - 1. 300
 - 2. Inspected every 5 years
 - 3. Maintained by county
 - ii. Private
 - 1. 600
 - 2. Inspected every year
 - 3. Maintained by property owner
 - iii. Both under same NPDES permit
 - iv. Inspection form
 - 1. County and EPD forms
 - 2. Issue with inspecting private ponds
 - c. Opportunity
 - i. MC put together a team to inspect private ponds

- ii. Use the chance to also inspect for other mosquito issues
- iii. Equipment needed
 - 1. Truck
 - 2. ULV sprayer
 - 3. Thermal fogger
 - 4. Backpack sprayer
 - 5. Trailer and utility vehicle
 - 6. PPE
 - 7. Flashlight, tape measure, etc
 - 8. Chemicals
- iv. Budgets
 - 1. Capital
 - 2. ??
- v. Personnel
 - 1. Extra employees 4
 - 2. Training county engineer
- d. The process
 - i. Ponds vary in upkeep
 - ii. Notices will be sent out
 - 1. 60 days
 - 2. Cut back vegetation
 - 3. Haul off debris
 - 4. Cover overflow unit
 - iii. Penalties
 - 1. Fines
 - 2. Jail time
 - 3. Community service
- e. Inspections
 - i. Find overflow
 - 1. Is it working
 - 2. Can water get to it
 - ii. Cut back vegetation
 - iii. Designed to empty themselves within 72 hours
- f. Results
 - i. Fill out county paperwork
 - ii. Fill out EPD paperwork
 - iii. List of approved contractors to deal with issues
- g. Still using goats
- h. Why is MC doing this?
 - i. Opportunity to get out into the public
 - ii. Educational opportunity
 - iii. Funding increase
 - iv. Finding new problems that can be controlled
- i. Future projects

- i. Determine mosquito productivity
- ii. Get stormwater working again
- IV. Mosquito Gut Microbiota Project Objectives Bret Boyd
 - a. Mosquitoes and bacteria
 - i. Wolbachia vertically transmitted
 - ii. Gut microbiota
 - 1. Diverse
 - 2. Essential for development
 - a. Molting
 - b. Adult health and reproduction
 - c. Vector qualities
 - 3. Acquired from environment
 - 4. Some persist into the adult stage
 - b. Why are microbiota variable?
 - i. Site by site variation
 - ii. Mosquito limits colonization
 - iii. Work has been focused on Aedes and Culex spp
 - iv. Clear out microbiota when they molt
 - c. What about less global species?
 - i. Site
 - 1. Does species matter?
 - 2. Is environmental variance more important?
 - ii. Host
 - 1. Physiology
 - 2. Behavior
 - iii. Habitat
 - 1. Varies by species
 - 2. Why
 - d. Sampling
 - i. Compare gut microbiota between species types
 - ii. Focus on a clade of mosquitoes
 - 1. Aedini
 - 2. Outgroup Orthopodomyia
 - iii. Different genera
 - iv. Different habitat choice
 - e. Methods
 - i. Collect mosquito larvae
 - ii. Extract bacterial DNA
 - iii. Use next generation sequencing to describe microbial diversity
 - iv. Use statistical analysis to look for similarities
 - v. Tree will vary depending on driving factors for microbial diversity
 - f. Rationale
 - i. Resource and habitat usage
 - ii. Vector competency

- iii. Identify novel bacteria species for control
- g. Samples needed
 - i. Live Aedini mosquito larvae
 - 1. Fourth instar
 - 2. >20 per site
 - 3. Water from site
 - ii. Please contact either Bret or Elmer
- V. West Nile Surveillance in Wild Birds 2014-2016 Joseph McMillan
 - a. Background
 - i. Wildlife disease of birds
 - ii. Spread by Culex
 - b. Methods
 - i. Mist nets
 - ii. ID birds to species
 - iii. Band birds
 - iv. Blood sample not all birds are sampled
 - c. Sampling sites
 - i. Areas in Atlanta
 - ii. Mosquitoes also sampled in areas
 - d. Results
 - i. 25 of 51 Atlanta species captured and bled
 - 1. 5 most commonly caught
 - a. American robin
 - i. ~25%
 - ii. >50% positive
 - b. Northern cardinal
 - c. Grey catbird
 - d. Mockingbird
 - e. Brown thrasher
 - 2. Other birds
 - a. ~50% for virus
 - b. Migrants are also found with antibody
 - ii. 429 samples
 - iii. 2015-2016
 - iv. Virus
 - 1. >50% show antibodies to virus
 - 2. Varies across time
 - e. WNV enzootic activity
 - i. 2014
 - 1. Acquire virus from exposure
 - 2. Virus seroconversion increases over time
 - 3. Infection seen in hatch year birds, which indicates transmission is occurring
 - 4. Grant Park was a hot spot

- ii. 2015
 - 1. Similar trend
 - 2. Somewhat fewer birds were positive
 - 3. Infection in hatch year birds
- iii. 2016
 - 1. WNV detected in all 4 parks
 - 2. Hatch year birds found positive
- f. Future projects
 - i. The effect of mosquito control
 - 1. Larviciding occurred in 2015 and 2016
 - 2. Need to analyze data
 - ii. The effect of weather
- VI. Revisiting Dadd's Mosquito Theory Donald Beasley
 - a. Reginald Dadd
 - i. Agricultural pests
 - ii. Mosquito nutrition
 - b. Composition of synthetic mosquito larvae diets
 - c. Theories mosquito larvae diet
 - i. Fatty acids
 - 1. Protozoa
 - 2. Non animal sources
 - ii. Maximum stage of development dependent on food type
 - iii. Can mosquitoes synthesize needed fatty acids?
 - d. <u>http://poorjavad.iut.ac.ir/sites/poorjavad.iut.ac.ir/files//files_course/the_insects</u> <u>structure_and_function4.pdf</u>. (See nutrition chapter)
 - e. So what? Why do we care about diet?
 - i. In search of unique characteristics
 - 1. Most mosquito larvae are omnivores
 - 2. It seems unlikely any class of food organism has key nutritional value
 - 3. Rex Dadd's work is being overlooked
 - ii. Ecology
 - iii. Autogeny
 - 1. Nutrient rich larval environments
 - 2. Predaceous larvae
 - iv. Eicosanoids
 - 1. Signaling lipids
 - 2. <u>http://study.com/academy/lesson/eicosanoids-definition-</u> <u>function-types-effects.html</u>
 - 3. Made and used up at site
 - 4. Mediate cellular immune reactions
 - v. Genome mapping
 - vi. Chemical ecology need for better understanding of the biochemistry
 - vii. Lab rearing

- 1. More consistency
- 2. Create mosquitoes in the lab that are closer to wild mosquitoes

Business Session

- New members
 - o 3-year board member Laura Peaty
 - Industry rep Zane McAllister
- 2016-2017 Board
 - President Kenna Graham
 - VP Joey Bland
 - o Directors
 - 1-year: Steve Pavlovich
 - 2-year: Allen Hillman
 - 3-year: Laura Peaty
 - Industry Member Zane McCallister
 - Secretary-Treasurer: David Touwsma
 - Past President Jeff Heusel
 - GA Cooperative Extension Rep Elmer Gray
 - GA Public Health Rep Rosmarie Kelly
- Next annual meeting will be Oct 18-20, 2017