GMCA - 2024

Session 1

- A. AMCA Washington Day Natasha Agramonte
 - a. Advocacy vs lobbying
 - i. Advocacy educating and raising awareness
 - ii. Lobbying direct communication to change views
 - b. https://www.mosquito.org/washington-conference/
 - c. Important to do post conference follow-up
 - d. Key Issues
 - i. America Needs Mosquito Control
 - ii. Drones
- B. Cheese as an Unconventional Mosquito Attractant Dan Peach
 - a. Knols and De jong Limburger Cheese as an Attractant
 - i. It smells like feet
 - ii. Analyzed the volatiles in a follow-up study
 - iii. Won 2006 Ig-Nobel Prize <u>https://improbable.com/2017/06/29/stinky-feet-and-cheese-researchers-research-gets-new-attention/</u>
 - b. What does attract mosquitoes
 - i. Aged sweat, not fresh
 - 1. Microbes on skin
 - 2. Only mammals possess sweat glands
 - ii. Making cheese
 - 1. Dates back to at least 5500 BCE
 - 2. Add microbes to milk
 - 3. Many of the microbes are related to skin microbes
 - 4. At least 500 varieties of cheese are recognized
 - a. Soft
 - b. Aged
 - iii. Hypothesis let's try other cheeses
 - 1. Mosquitoes
 - a. Culex pipiens
 - b. Aedes aegypti
 - 2. All varieties of cheese attracted both species
 - 3. Field study
 - a. Attractants
 - i. Cheese brie
 - *ii*. CO2 trap
 - b. Mosquitoes captured
 - i. Cx pipiens
 - ii. Culiseta incidens
 - 4. What about oviposition?
 - a. Casu Martzu
 - *i*. Produced using maggot fermentation
 - *ii.* Eat the live maggots with the cheese
 - b. Cheese infusion
 - *i.* Brie, raclette, or Limburger cheeses
 - ii. Sit for 5 days in water

- c. Only the *Culex pipiens* ovipositor in the different cheese infusions in the lab
- d. Field
 - *i*. Tested cheese against grass infusion
 - *ii.* Brie infusion was twice as attractive as the hay infusion
- 5. What about homemade cheeses?
 - a. Used different starter microbes
 - b. Results
 - i. One was attractive
 - ii. One was repellent
 - *iii*. One was indifferent
- 6. Interesting aside
 - a. Got egg rafts in the field
 - b. Didn't see larvae
 - c. Maybe there is a larvicidal property, but why?
 - d. Needs more study
- 7. Next steps
 - a. Customize too optimize attraction
 - b. Possible CO2 production
 - c. Larvicidal property
- 8. https://scijournals.onlinelibrary.wiley.com/doi/abs/10.1002/ps.6603
- C. Entomological Approach for Industry Emma Grace Crumley
 - 1. Mosquito Squad
 - a. Headquartered in Macon, GA
 - b. National franchises
 - c. Use an IMM approach
 - d. Balance between environmental stewardship and client satisfaction
 - 2. IMM approach
 - a. Do inspection
 - b. Source reduction
 - i. Intentional
 - ii. Accidental
 - iii. Water features
 - iv. Flood/pooling areas
 - c. Identification
 - i. Listening to customer
 - ii. Identify pest
 - iii. Understand process
 - d. Communication
 - i. Understand sensitive locations
 - ii. Other issues
 - e. Mechanical control
 - i. Educate customer
 - ii. Trimming back vegetation
 - f. Chemical control
 - i. Larvicide

- ii. Barrier spray
- 3. Surveillance tools
 - a. Customer feedback
 - b. Google alerts
 - c. NOAA info
 - d. ArboNET
 - e. Driftwatch
 - f. Beecheck
- 4. Entomologist's job
 - a. Review trainings
 - b. Create educational content
 - c. Answer questions
 - d. Blogs/social media
 - e. Community engagement
- D. Inhibition of Emergence Mike Riles
 - a. Overview
 - b. Methoprene is a juvenile hormone analog
 - c. Works in parts per billion range
 - d. Prevents successful molting to adult stage
 - e. Ingestion & absorption
 - f. Product
 - i. Highly volatile
 - ii. Breaks down under UV
 - iii. Use microencapsulation to provide slow release of product
 - g. Insect growth Regulation
 - i. Juvenile hormone regulated by ecdysone
 - ii. Highest in earliest larval stages
 - iii. Decreases with time
 - iv. Methoprene keeps jh high in pupal stage
 - h. Modes of Action
 - i. Ingested through filter feeding
 - ii. Absorbed through cuticle
 - i. Inhibition of Emergence
 - i. IE (%) = (C-T/C) x 100
 - 1. C % emerging from control
 - 2. T % emerging from treatment
 - ii. Assessing Success
 - 1. Qualitative
 - a. Sample from random sites
 - b. Sample from controls
 - 2. Troubleshooting
 - a. Assess the application
 - i. Application rate
 - ii. Environmental factors
 - iii. Water quality
 - b. Mechanic of application calibrate often
 - c. Wind speed
 - d. Target missed

- e. Human error
- iii. What is impeding success?
- j. Reflections
 - i. Only collect pupae
 - 1. JH at lowest level
 - 2. S-methoprene at high levels
 - ii. Larvae have high levels of JH
- E. Georgia's Pesticide Resistance Testing Program Tiffany Nguyen
 - a. Insecticide resistance
 - i. Product doesn't work or only partially works
 - ii. How
 - 1. Lack of calibration
 - 2. Improper application
 - 3. Using product for too long
 - iii. Types of resistance
 - 1. Metabolic
 - 2. Target site
 - 3. Penetration
 - 4. Behavioral
 - 5. Cross-resistance
 - iv. Bottle bioassay https://www.cdc.gov/mosquitoes/php/toolkit/cdc-bottlebioassay.html
 - b. Process
 - i. Collect eggs we collect *Aedes albopictus* and *Culex quinquefasciatus* primarily
 - ii. Rear eggs to adult stage
 - iii. Test using bottle bioassay
 - 1. Diagnostic time
 - 2. Diagnostic dose
 - 3. End after 2 hours
 - c. Using technical grade pesticide, not pesticides used by control programs points to potential developing resistant
 - d. Interpreting results
 - i. Lab vs field studies
 - ii. Technical grade active ingredients vs commercial products
 - iii. Developing resistance does not mean the product doesn't work
 - e. Managing resistance
 - i. Follow label
 - ii. Calibrate
 - iii. IMM
 - iv. Rotate chemicals
 - v. Leave untreated refuges
- F. INDUSTRY SPOTLIGHT
 - a. AZELIS Dan McCombie
 - b. AMVAC Derek Wright
 - c. Central Life Sciences Mike Riles/Dan Killingsworth
 - d. Target Steve Molnar
- G. Georgia EPD's Tire Management & Abatement Program Lena Sassone

- a. Programs dealing with tires (https://epd.georgia.gov/about-us/land-protectionbranch/recovered-materials-and-abatement/tire-management)
 - i. Recovered Materials Unit tire abatement
 - ii. Tire Management Unit regulatory
- b. TMU deals with registration, permits, complaints, and control
- c. Recovered materials unit
 - i. STAR program
 - 1. Funds annual tire day
 - 2. Reimburses local government scrap tire abatement projects
 - 3. <u>https://epd.georgia.gov/about-us/land-protection-</u> <u>branch/recovered-materials-and-abatement/recovered-</u> <u>materials/star-grant</u>
 - 4. For info <u>EPD.star@dnr.ga.gov</u>
 - 5. Work with Keep Georgia Beautiful to put in application
 - ii. 8 tire recyclers
 - iii. Tire products grant
 - iv. Recycling and waste diversion grant
 - v. State-led abatements
 - 1. Unresolved or emergency response
 - 2. Property owner is unable to remove tires or was the victim of dumping
- d. Solid Waste Trust Fund
 - i. Established in 1990s
 - ii. Part of the Georgia Comprehensive Solid Waste Management Act
 - iii. Recent amendment (2022) allocated all trust fund fees to their allotted program
- H. Alpha-Gal Syndrome: Tick Bite Induced Red Meat Allergy Nancy Hinkle
 - a. Georgia has 23 tick species
 - b. Red meat allergy associated with lone star tick bites
 - i. External hives
 - ii. Internal (GI tract) hives
 - iii. Anaphylaxis
 - c. Allergic reaction typically occurs 3 to 8 hours after eating red meat
 - d. Tick bite is not associated temporally with the allergy
 - e. Number of tick bites before allergic reaction varies
 - f. Allergy
 - i. Reaction to a sugar galactose-alpha-1,3-galactose ("alpha-gal")
 - ii. All animals except higher primates and human produce this sugar
 - iii. Delayed hypersensitivity reaction
 - iv. Seems to be blood type dependent
 - g. Lone star tick
 - i. Feeds on a wide range of animals
 - ii. Range is expanding
 - h. Treatment is symptomatic, avoidance of tick bites is key
 - i. Protection
 - i. Permanone on clothing
 - ii. Tuck your pant legs into your socks
 - iii. Wear repellent containing DEET

Session 2

- A. Locally-Acquired Malaria in the 21st Century: Searching for Vectors Becca Love
 - a. Background
 - i. An crucians shipped for testing from Florida
 - ii. Historically, An quadrimaculatus are the SE USA malaria vector
 - b. Study areas
 - i. Heavily wooded
 - ii. Big trees
 - iii. Water close by
 - c. Trapping
 - i. CDC light traps
 - ii. Resting boxes
 - d. Study sites
 - i. Decatur
 - 1. Found all 3 common Anopheles species
 - 2. Water levels appear to predict An crucians but not An punctipennis
 - 3. Most mosquitoes caught in light trap
 - 4. Caught very few An quadrimaculatus
 - 5. Never caught An crucians in resting traps
 - ii. Valdosta
 - 1. Small spike of quads early on
 - 2. Most mosquitoes caught in light trap
 - iii. Sarasota
 - 1. Found *Anopheles* in the resting boxes
 - 2. Changed the resting trap design
 - e. Next steps
 - i. Cold-weather sampling
 - ii. Different sampling techniques
 - iii. Molecular ID to differentiate sibling species
 - iv. Population genetics
- B. Using UAS with Fieldseeker GIS Software and ArcGIS Online Chad Minteer
 - a. Using unmanned aerial systems (UAS)
 - i. Automated treatments
 - ii. Mapping
 - iii. Inspections
 - b. Automated treatment drones
 - i. Reach hard-to-reach areas
 - ii. Enter dangerous areas
 - iii. Treat areas too small for aircraft
 - c. Becomes a very useful tool when used with Fieldseeker and ArcGIS Online
 - i. Allows use of your own data
 - ii. Data can be shared with drone
 - d. Fieldseeker
 - i. Integrates with ArcGIS Online
 - ii. Can review and export proposed treatment areas
 - iii. All known data about the area can be shared

- iv. Treatment information can be added manually or imported
- e. All data can be brought together and mapped on ArcGIS
- f. Mapping
 - i. Orthomosaic image
 - ii. ESRI also has software for using drone data
 - iii. Can create image layers
- g. Inspections
 - i. Part of Drone2Map Advanced
 - ii. Export data as a report or map data
 - iii. Can add imagery layer to ArcGIS Online (oriented imagery)
- C. ReMoa Tri, A New Active Ingredient for Mosquito Adulticiding Katie Williams
 - a. Resistance issues
 - i. More than 500 species worldwide are resistant to current pesticides
 - ii. KDR and metabolic resistance or common
 - iii. Lots of resistance to pyrethroids
 - b. New products are needed ReMoa Tri
 - i. 3 modes of action
 - 1. Abamectin
 - a. Same family of ivermectin
 - b. Different mode of action than used before in mosquito control
 - 2. Fenthropathein type 2 pyrethroid
 - 3. C8910
 - a. Mixture of 3 fatty acids
 - b. Acts as an insecticidal soap
 - ii. Based on fermenting soil bacteria
 - iii. Oil-based
 - iv. Non-corrosive
 - v. Look at results after 24 hours
 - vi. Labeled for aerially and for ground in Georgia
 - vii. ULV
 - viii. Ready-to-use
 - c. Field trials
 - i. Arizona truck spray
 - 1. Culex spp mix
 - 2. Over 90% mortality seen
 - ii. California backpack sprayer
 - 1. Culex quinquefasciatus resistant strain
 - 2. Over 90% mortality seen
 - iii. Florida
 - 1. Aedes aegypti resistant strain
 - 2. Good results
 - iv. Other sites around the US and Puerto Rico
 - v. Tanzania resistant Anopheles spp
- D. Development of a Black Fly Repellent Testing Protocol Skyler Kerr
 - a. Flies
 - i. Autogenous species
 - ii. Sexually dimorphic

- iii. Utilize post-ovipositor females
- iv. Phototaxic positive
- b. Attraction cues
 - i. 7 major cues
 - ii. 3 top cues
 - 1. Visual
 - 2. Thermal
 - 3. Chemical
 - iii. Used in study
 - 1. Thermal
 - 2. Visual
 - 3. Gustatory and olfaction
- c. Repellent selections
 - i. DEET
 - ii. IR3535
 - iii. PMD
 - iv. Oil of lemon eucalyptus
 - v. Picaridin
- d. Testing system
 - i. Water-jacketed feeding membranes
 - ii. Apply repellent to membrane
 - iii. Observe feeding rates
 - iv. Attractant is sucrose
- e. Process
 - i. Aspirate 40 females into cups
 - 1. Latex membrane on top
 - 2. Clear plastic on bottom
 - ii. Attractant sucrose
 - iii. Repellent added to membrane
 - iv. Count how many flies are feeding
 - 1. 5-minute count
 - 2. Conducted once every 2 hours for 12 hours
- f. Trials
 - i. Dosage variation
 - 1. Use publicly available product
 - 2. Multiple replicates
 - ii. Find standard DEET percent
 - 1. Non-coverage is an issue
 - 2. DEET dissolves plastic, which is a problem with this system
- g. Future directions
 - i. Work on repellent concentrations
 - ii. Try some new repellent types
 - iii. Dissect flies to be sure they actually laid eggs
 - iv. Color sucrose?
- E. Characterizing the Resting Behavior of *Aedes aegypti* to Advance Vector Control David C Jimenez-Vallejo
 - a. Semi-field perspective
 - b. Typical control

- i. Dengue control
- ii. Typically, rest inside houses down lower
- iii. Targeted insecticide residual spraying
 - 1. Saves money
 - 2. Saves times
- c. Study
 - i. The targeted focus of TIRS shifts the selective force on the mosquito
 - 1. A fraction of mosquitoes still rest up higher on wall
 - 2. Will this lead to the development of behavioral resistance as in *Anopheles* spp
 - ii. Other questions
 - 1. Instrinsic
 - a. Strain
 - i. Rockefeller (lab)
 - ii. Marida wild strain (field)
 - b. Sex
 - i. Males
 - ii. Females
 - c. Physiological status
 - i. Fed females
 - ii. Unfed females
 - 2. Extrinsic
 - a. Microclimate
 - b. Color attraction
- d. Set up
 - i. Experimental field huts in the Yucatán Peninsula
 - ii. Captured climate in hut at height and over time
 - iii. Photonic fence monitoring device capture flight
 - 1. Recorded for 2 hours
 - 2. Aspirate everything that wasn't stuck on sticky traps
 - iv. Sticky traps capture resting
 - 1. 4 kinds
 - a. Fully black
 - b. Fully white
 - c. Black over white
 - d. White over black
 - 2. 2 meters tall
 - 3. Measure location of mosquitoes on trap
- e. Sampling
 - i. Morning
 - ii. Middle of day
 - iii. Afternoon
- f. Results
 - i. Both strains primarily flew low
 - ii. Field strain primarily rested low
 - iii. Preferred black site for resting
 - iv. Mosquitoes track microclimate but ignore it in favor of color
 - v. Lab strain more variable in response to factors than field strain

- F. INDUSTRY SPOTLIGHT
 - a. AMVAC Derek Wright
 - b. Clarke Sidney Brogden
 - c. Frontier Precision Chad Minteer
 - d. NDP Mike Howe
- G. Ticks and Tick-Borne Diseases William Nicholson
 - a. Ticks and tick-borne pathogens
 - i. Earliest reference to ticks in 1900s
 - ii. 1972
 - 1. 21 species
 - a. 4 soft
 - b. 17 hard
 - 2. Wilson and Baker
 - iii. Today
 - 1. 26 tick species
 - a. 6 soft
 - b. 20 hard
 - 2. 4 genera of soft species
 - 3. Genera of hard ticks?
 - 4. 11 exotic/imported did that have been reported but not established
 - 5. Asian longhorned tick
 - a. Documented as entering US in 2010
 - b. Found in Georgia in 2021
 - c. Now found in 21 states and DC
 - d. Primary concern is to agriculture
 - b. Georgia (http://www.gamosquito.org/tick.htm)
 - i. Common species
 - 1. Amblyomma americanum
 - 2. Dermacentor variabilis
 - 3. Amblyomma maculatum
 - 4. Ixodes scapularis
 - 5. Rhipicephalus sanguineus
 - ii. Trends in TBDs (https://www.cdc.gov/ticks/about/)
 - 1. Pathogen picked up during feeding
 - 2. Passed transovariolly
 - 3. Pathogens
 - a. Bacteria
 - b. Protozoans
 - c. Viruses
 - 4. Account for >80% of all reported VBDs in US
 - 5. Ticks are becoming more widespread
 - 6. TBD incidence has more than doubled in the last 20 years
 - a. Some affect from changes in case definition
 - b. Only about 10% of cases are reported
 - iii. Movement of ticks
 - 1. Re-establishment of historic areas based on changes in the areas
 - 2. Tick movement
 - iv. AlphaGAL

- 1. Thompson et al 2023
- 2. Viracor data
- 3. 78% of HCP have little to no info about AlphaGAL
- v. RMSF
 - 1. Brown dog tick associated RMSF documented from the 1940s
 - 2. Usually associated with Dermacentor variabilis
- c. Tick survey Georgia (2016-2019)
 - *i*. Looked at areas all over Georgia
 - *ii.* Varying amounts a pathogen infection found
- d. CDC National Tick Surveillance Program
 - i. https://www.cdc.gov/ticks/data-research/facts-stats/index.html
 - ii. Tick surveillance guidelines
 - iii. Data collected via ArboNET

Session 3

- A. Mosquito Flower Power: Determining How Nectar Contents Can Influence Mosquito Vectors Danica Shannon
 - a. Not as much is known about the innate interactions of mosquitoes and the environment
 - b. Evidence of nectar feeding affecting pathogens (Richardson et al 2015)
 - c. Heavy metal impacts
 - i. Have been investigated in larval habitats
 - ii. More info is needed about impact on adults through nectar feeding
 - d. Hypothesis the presence of heavy of heavy metals and secondary metabolites in flower nectar will alter infection rates in mosquitoes
 - i. Determine what interactions are occurring
 - ii. Determine the effect on infection rate and mortality
 - e. Also testing Yucatán Peninsula mosquitoes from Prokopec lab 🥼
- B. GDPH Surveillance Report Rosmarie Kelly
- C. Georgia's FieldWatch Registries Nick Sumner
 - a. Free to use
 - b. Georgia is the 25th State to join the project
 - i. Rolled out end of July 2024
 - ii. New technology
 - c. Mapping tools
 - i. Driftwatch
 - ii. Beecheck
 - iii. Fieldcheck
 - iv. Cropcheck
 - v. Seedfieldcheck
 - d. Started at Purdue University in 2008 in response to damage to tomato crops
 - e. Fieldwatch
 - i. Voluntary
 - ii. Only National crop registry
 - iii. Public site
 - iv. Approved log-in sites
 - f. https://fieldwatch.com
 - i. UGA Dr Alison Johnson is the data steward (ajohns14@uga.edu)

- ii. Public Service Assistance entomologist
- g. EPA certification & training changes are coming
- D. Geosmin as a Safe, Environmentally-Friendly Means of Mosquito Control Brianna Young
 - a. What is it?
 - i. Terpene scent class
 - ii. Non-toxic to humans
 - b. Korean study showed a link between geosmin and serotonin
 - c. Affect on insect behavior
 - i. At low concentrations if suppresses defensive behavior in honeybees
 - ii. Is an attract for fire ants
 - iii. Repels gravid fruit flies
 - iv. Attractant to gravid Aedes aegypti
 - d. Mosquito control usage
 - i. Attract mosquitoes to traps
 - ii. Concentration is critical
 - iii. One source beets
 - e. Community involvement
 - i. Plastic bottle trap
 - ii. Bait with beets and water
- E. Medical Entomology in the US Navy Peter Obenauer
 - a. Vector-borne diseases have a high impact on military operations
 - b. 1861
 - i. Lincoln created the Sanitary Commission
 - ii. Led to the Marine Hospital in 1912
 - c. Malaria Control in War Areas developed into the CDC in 1946
 - d. Navy
 - i. World War II
 - 1. The first Navy entomologists were commissioned in 1941 to address arthropod-borne diseases.
 - 2. In 1942, Navy Epidemiology Units (NEUs) were deployed to Éfaté, a strategic location in the South Pacific, to support a Marine battalion.
 - 3. By 1944, there were approximately 200 entomologists in the NEUs.
 - ii. Navy Entomology Center of Excellence
 - 1. The Navy Disease Vector and Ecology Control Center in Jacksonville, Florida was renamed the Navy Entomology Center of Excellence (NECE).
 - 2. NECE is the Navy and Marine Corps' center of excellence for operational entomology.
 - iii. Navy Entomologists
 - 1. Today, Navy entomologists are mission-critical specialists who support Force Health Protection and Readiness.
 - 2. They work to prevent and reduce disease and non-battle injuries caused by arthropods.
 - 3. They also train military and civilian personnel in pest and vector management strategies.
 - e. Navy entomologists support the fleet and the U.S. Marines by:
 - i. Controlling arthropods that can harm ships and planes, such as cockroaches, bed bugs, and spiders

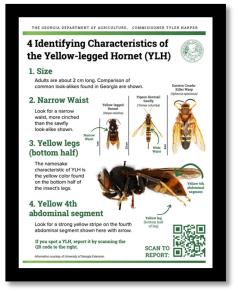
- ii. Providing pest control training to shipboard personnel
- iii. Conducting pest management program reviews at shore installations
- iv. Providing professional consultation and advice for contingency, disaster relief, humanitarian, and capacity building operations
- F. West Nile Virus Surveillance in the Southern United States Dan Killingsworth
 - a. Background
 - i. WNV introduced in the US in 1999
 - ii. Zoonotic mosquito-borne flavivirus
 - iii. Vectors
 - 1. Culex pipiens
 - 2. Culex tarsalis
 - 3. Culex quinquefasciatus
 - iv. A Study of the Etiology of WNV in Egypt, 1956
 - v. West Nile Virus Story -Dickson Despommier
 - vi. CDC WNV Guidelines, 1999
 - vii. ArboNET
 - viii. Expansion probably due to avian migration flyways
 - b. Seasonal peak
 - i. Affected by biology of the vector
 - ii. Birds
 - 1. Winter immunity
 - 2. Spring nestlings have partial immunity from mother
 - 3. Summer YoY lose immunity
 - 4. Winter immunity
 - iii. Bird behavior causes a shift in mosquito feeding choices to mammals
- G. INDUSTRY SPOTLIGHT
 - a. Valent Katie Williams
 - b. VDCI Pete Obenauer
 - c. Veseris Scott Artman
- H. Chatham County Mosquito Control PCR Overview Tyler Follman
 - a. Disease surveillance
 - i. Trap mosquitoes
 - ii. Identify and sort mosquitoes
 - iii. Test mosquitoes
 - iv. Decide on action
 - b. Prioritize high risk areas
 - i. Adjust spray thresholds
 - ii. Keep public safe
 - iii. Monitor vectors
 - iv. Monitor effectiveness of program
 - c. Goal keep *Culex* young
 - d. Testing
 - i. In-house PCR (started in 2022)
 - 1. Pros
 - a. Quick results
 - b. Identify and monitor problem areas
 - c. Reliable in a pinch
 - d. Allows testing of more species

- 2. Cons
 - a. More work
 - b. Targeted virus WNV, EEE, SLE
 - c. Equipment costs & maintenance
 - d. Availability of supplies
 - e. Space
 - f. Results can be difficult to interpret
- ii. SCWDS (started in 2001)
 - 1. Pros
 - a. Less work
 - b. Test for a wider range of viruses
 - 2. Cons
 - a. Limited contract
 - b. Unreliable timeline
 - c. More expensive per sample
 - d. Mix-up with results
- e. Allows for verification of results
- f. Going forward
 - i. Test chicken blood
 - ii. Set better thresholds
- I. Ecological Dynamics of *Aedes aegypti-Wolbachia pipientis w* AlbB Strain Interactions Juan Sebastian Duran Ahumada
 - a. Described in 1924
 - i. Incompatibility between 2 species of Cx pipiens
 - ii. Hertig and Wolbach
 - b. 4 strains of wolbachia of interest for Aedes control
 - c. Types of control
 - i. Incompatible Insect Technique
 - 1. Male releases
 - 2. Local suppression/elimination
 - 3. No impact on male fitness
 - ii. Population replacement
 - 1. Self-sustained wolbachia frequency
 - 2. No impact on fitness
 - 3. Wolbachia mediated pathogen blocking
 - d. Study
 - i. Stability of wolbachia
 - ii. Mosquito fitness
 - 1. Fecundity
 - 2. Fertility
 - 3. Biomass of males and females
 - iii. Performance
 - 1. Survival of males and females
 - 2. Development time
 - 3. Proportion of pupae to emerge as adults
 - 4. Adult sex ratios
 - e. Study done in field conditions experimental houses
 - i. blood fed 3 days/week for 30 minutes

- ii. Supplied with sugar water
- f. Tracked abundance results were not sustained
- g. Conclusions
 - i. Transient differences in abundances
 - ii. Decreased frequencies
 - iii. Equal or higher relative densities

Session 4

- A. Update from Richmond County Mosquito Control Mindy Kruty-Crothers
 - a. IMM Program
 - i. School education program
 - ii. Larvicide
 - iii. Adulticide
 - iv. Surveillance
 - b. Property, pool, and storm drain program (Allen Hillman)
 - i. Larvicide storm drains
 - ii. Work with homeowner to remediate swimming pools
 - iii. Follow-up on complaints
 - 1. Inspection
 - 2. Tip and toss
 - 3. Larvicide
 - 4. Adulticide
 - c. Use the 311-call system
 - d. Pond program (Jerry Albee)
 - e. Mosquito surveillance
 - i. Trap every location twice a month
 - ii. Big change after Hurricane Helene
 - f. After the hurricane
 - i. ULV spray in neighborhoods
 - ii. PSA information being spread
- B. The Public Health Entomology for All (PHEFA) Experience Jamesia Henderson
 - a. PHEFA https://www.entsoc.org/advocacy-initiatives/public-health-entomology-


<u>for-all</u>

- i. Internship and fellowship program
- ii. Partnership between CDC and ESA
 - 1. Fort Collins
 - 2. San Juan
 - 3. Atlanta
- iii. Created to help address the lack of diversity in entomology
- iv. 5 core areas
- b. CDC component
 - i. Networking/Conferences
 - ii. Lab experience
 - 1. Chemical assay
 - 2. Molecular techniques
 - 3. Insecticide-treated nets

- 4. Mosquito colony maintenance
- iii. Community involvement
- c. Involvement with State Health Departments new program
 - i. Tick collection
 - ii. Project leadership
 - iii. Mosquito surveillance
 - iv. Mosquito & tick surveillance
 - v. Insecticide resistance testing
- d. Professional development opportunities
- C. Chatham County Season Overview Ture Carlson
 - a. April
 - i. Yellow legged hornet traps
 - 1. Started in early March
 - 2. Year-long program
 - ii. Worked with GDA
 - iii. 11 of 67 trap locations have been positive
 - b. Nuisance aerial adulticiding started in April
 - c. May
 - i. Honeybee complaints
 - 1. May 13
 - 2. May 29-30
 - 3. No hive loss
 - 4. Forager loss
 - ii. 2 beekeepers "lost" foragers after canceled missions
 - d. Tropical Storm Debby
 - i. August 4th
 - 1. lots of rain
 - 2. Not much wind
 - ii. CEMA needed sandbags
 - 1. Provide tons of sand
 - 2. Mosquito control made 328 sandbags for Chatham County facilities
 - 3. August 5th, left bags and shovels for homeowners to make their own sandbags
 - iii. Closed Aug 6-7
 - 1. Facility inspection
 - 2. Handled EOC questions
 - 3. 9 dams have issues
 - 4. 1 large dam and 3 small dams failed
 - iv. Aug 8
 - 1. Started inspection flights for EOC
 - 2. Too much water to larvicide
 - v. Aug 9
 - 1. River flooding starts
 - 2. More inspection flights
 - 3. Surveillance
 - 4. I-95 bridge was 5 feet from being closed
 - 5. Crest occurred on Aug 12
 - vi. Aug 16

- 1. Press conference with PH
- 2. Too much water to larvicide
- vii. Aug 21
 - 1. Aerial 85,000 acres
 - 2. Truck-
- e. Hurricane Helene
 - i. Sept 23-26
 - 1. Pre-storm assessment flight
 - 2. Rainfall bands passed through county dropping 5+" of rain in places
 - ii. Sept 27
 - 1. 76 mph winds
 - 2. Lots of tornado warnings
 - 3. Assessment flights
 - 4. Surveillance
 - iii. Sept 28
 - 1. Lots of power outages
 - 2. Larval site inspections
 - 3. Cleared access trails
 - iv. Sept 30 Oct 4
 - 1. Aerial adulticiding 1260 acres
 - 2. Ground larviciding 55.1 acres
 - 3. Brood hatch started Oct 4
 - v. Oct 5
 - 1. Richmond County reached out for adulticiding help
 - 2. Became complicated very quickly
 - 3. Need a contingency plan with a contractor
- f. Mosquitoes
 - i. Culex spp numbers barely changed after the hurricanes
 - ii. Possible Zika case turned out to be lab error
 - iii. WNV
 - 1. Human cases
 - a. Homeless man
 - i. Donated blood on July 4th
 - ii. Classified as WNV+ presumptive
 - b. Aug 9 first actual case
 - c. Sept 2 second blood donor positive
 - 2. Mosquito positives
 - a. Spike in 2011
 - b. 2024 similar spike
 - c. Control is done differently now
 - d. Bottom line keep them young
 - 3. Heavy rains led to high nuisance complaints
- D. Yellow-Legged Hornet Update Randi Balog
 - a. <u>https://agr.georgia.gov/yellow-legged-hornet</u>
 - b. First reported in July 2023
 - c. From northern Asia
 - d. Yellow legged hornets
 - i. Bee eaters

- 1. Super aggressive to bees
- 2. Not terribly aggressive to people
- ii. Nests die off in late fall
 - 1. Put out 15-50 fertile queens
 - 2. Start a new nest in the Spring
 - 3. Everything else dies off
- iii. The legs are partially or primarily yellow, hence the common name "yellowlegged hornet."
- iv. The body and head coloration can vary.
- v. This hornet is a social wasp species that constructs egg-shaped paper nests above the ground, often in trees.
- vi. These nests can become large, housing an average of 6,000 workers.
- vii. Several native or other introduced hornets are similar in appearance
- e. Tracking the hornets
 - i. Tracker technology didn't work well, too heavy
 - ii. Traps with "Georgia juice"
 - iii. Lots of looking up for nets after letting worker go and watching where she flew
- f. Savannah has been a hot spot
- g. Difficult to observe outside of nest as nests are located high up in trees
- h. Nest removal
 - i. PPE chemical use
 - 1. Spray nest to kill off workers and queen
 - 2. Workers left will die off
 - ii. Bee suit
 - iii. Lift and climbing gear
- i. UGA is working on projections for spread
- E. Methods of Mosquito Biocontrol and Incidence of WNV in the Neotropics Adrian Vasquez
 - a. IPM
- i. Helps with habitat conservation
- ii. Important in preventing pesticide resistance
- b. Biocontrol ecological interactions
 - i. Plant
 - ii. Fungi
 - iii. Bacteria
 - iv. Diverse parasites, such as nematodes
 - v. Predators
 - 1. Mosquito fish have been a success, with some caveats
 - 2. Copepods
 - 3. Water mites
 - a. Parasitize mosquitoes
 - i. Water mite larva attaches to emerging mosquito
 - ii. Impacts mosquito fitness

- b. Feed on many other organisms in the freshwater habitat https://pmc.ncbi.nlm.nih.gov/articles/PMC8321515/#:~:text =Water%20mites%20are%20small%20carnivorous,from%20 its%20aquatic%20pupal%20stage.
- 4. Future research question Why is there little WNV in Latin America?
 - a. https://pmc.ncbi.nlm.nih.gov/articles/PMC3958988/
 - b. https://www.researchgate.net/publication/7228383_West_N ile_virus_activity_in_Latin_America_and_Caribbean?_tp=eyJj b250ZXh0ljp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlljoi X2RpcmVjdCJ9fQ
- F. Summer Training Session Discussion Griffin, June 2025
 - a. Agenda
 - i. Basic mosquito biology
 - ii. Mosquito-borne diseases in Georgia
 - iii. Mosquito surveillance techniques
 - iv. Basic IMM practices
 - v. Control options and applications
 - vi. Insecticide resistance
 - vii. Pesticide labels and safety
 - viii. Imported species
 - ix. Barrier treatments
 - x. Calibration
 - b. Need to look at dates, times, and places

Business Meeting

- 1. Minutes approved
- 2. Treasurer's Report approved
- 3. Officers
 - a. President Caroline
 - b. VP Natasha
 - c. Directors
 - i. 1 year Dan
 - ii. 2-year Bryan
 - iii. 3-year Mindy
 - d. Sec/Tres Misty
 - e. Industry Mike Riles
 - f. Past President Doug/Tiffany