

Characterizing the resting and flight behavior of Aedes aegypti to advance vector control

David Jimenez-Vallejo PhD Candidate – Prokopec Lab, Emory University Georgia Mosquito Control Association – 2024 Annual Meeting October 17th, 2024

Aedes-borne diseases continue to pose a **significant burden** on humans worldwide

Kraemer et al., 2015

Aedes aegypti is the primary vector of Dengue, Zika, and Chikungunya

- ~280 thousand ZIKV cases in 2019 (global)
- ~100 thousand CHIKV cases in 2020 (the Americas)
- ~50-100 million DENV cases per year (global)

HEALTH

Here's what to know about dengue, as Puerto Rico declares a public health emergency

MARCH 27, 2024 · 1:59 PM ET By Joe Hernandez

Victoria Micieli, director and scientist at the Center for Parasitological and Vector Studies of the national scientific research institute CONICET, classifies different species of mosquitoes at a laboratory in La Plata, in Argentina's Buenos Aires Province, on Tuesday. *Luis Robayo/AP via Getty Images*

Selectively spraying insecticides according to the behavior of vector species can improve their efficacy

Insecticide Residual Spraying has evolved to be "TARGETED"; aka TIRS

Dzul-Manzanilla et al., 2016

fraction of application time (<18%) and insecticide volume (<30%)

The **targeted focus** of TIRS **shifts** the **selective force** experienced by mosquitoes in **3D space**

- A fraction of mosquitoes are still choosing to rest > 1m
 - Escape mortality
 - Across scales component
 - Selection can favor this fraction
 - Behavioral resistance evolves
 - TIRS is jeopardized

Manrique-Saide et al., 2020

Given current knowledge, it is difficult to conclude or predict if Ae. aegypti is capable of evolving behavioral resistance

Pronounced gaps in what drives resting behavior

- Impact of microclimatic conditions?
- Does color attraction modulate behavior?
- Different resting strategies between sexes and feed status?
- Does a genetic basis exist for the behavior?
 - Gene x Environment interactions?

Aim 1: disentangle the individual/combined influence of intrinsic and extrinsic factors driving innate resting behavior

• Hypothesis

- The **innate resting** behavior of *Ae. aegypti* is **driven by microclimate**, with the number and color of resting "targets" only modulating mosquito arrangement in flight
 - Intrinsic factors
 - Strain
 - Sex
 - Physiological status

- Extrinsic factors
 - Microclimate
 - Color attraction

Experimental field huts, the **Photonic Fence Monitoring Device**, and **sticky traps** are at the **core** of the experimental design

Experimental field huts, the **Photonic Fence Monitoring Device**, and **sticky traps** are at the **core** of the experimental design

Continuous sticky **traps** sampled resting mosquitoes across all possible heights, while **accounting** for **color** cues

- Previous studies have typically used categorical sampling
 - > 1m vs < 1m
 - A 2-meter sheet allows continuous sampling

Sticky sheet treatments

Experimental field huts, the **Photonic Fence Monitoring Device**, and **sticky traps** are at the **core** of the experimental design

Three experimental **groups** from **two strains** were tested under each color treatment

Lab adapted – Rockefeller (LAB)

Field – Merida Wildtype (FIELD)

Three experimental **groups** from **two strains** were tested under each color treatment

Field – Merida Wildtype (FIELD)

A latin-square was designed to ensure each experimental group was assessed at three different diel time points

	Day 1	Day 2	Day 3
9AM	М	UF	BF
12PM	UF	BF	М
4PM	BF	М	UF

Though **both strains** are primarily **flying low**, only the **FIELD** strain shows a pronounced **preference** to **rest** at a much **lower** height

ONLY CONSIDERING INTRINSIC FACTORS

If **color** is **modulated** by **height**, mosquitoes **prefer** to **res**t on **black** regardless of **diel** time point

ONLY CONSIDERING EXTRINSIC FACTORS

RESTING

200

Density Curve of Height Coordinates

Black/White Color Treatment

Density

Density Curve of Height Coordinates

Full-Black Color Treatment

Density

200

However, **mosquitoes** are willing to **disregard** these **conditions** and **track black** when **color** attraction is **modulated** by **height**

ONLY CONSIDERING EXTRINSIC FACTORS

However, **mosquitoes** are willing to **"give up"** these **conditions** and **track black** when **color** attraction is **modulated** by **height**

ONLY CONSIDERING EXTRINSIC FACTORS

Though **FIELD** has **slight difference**s between **Males and Females**, their patterns are **more consistent** across **diel** time in **comparison** to **LAB** mosquitoes

CONSIDERING INTRINSIC + EXTRINSIC FACTORS

Primary conclusions to this point

PFMD performs in semi-field

FIELD rests lower than LAB Possible strain/genetic differences

Preference for Black over White

Microclimatic gradients differ between Noon and Morning/Afternoon; More tolerable conditions preferred until color is modulated by height

Acknowledgements

Georgia Mosquito Control Association

• Dr. Rosemarie Kelly

Prokopec Lab @ Emory University

 Dr. Gonzalo Vazquez-Prokopec, Dr. James Earnest, Dr. Oscar Kirstein, Sebastian Duran, Stephanie Bellman, Kieran Aguirre, Seana Cleary, Bella Roeske, Jessica Cheng

UCBE @ Autonomous University of Yucatan

 Dr. Pablo Manrique-Saide, Dr. Gabriela Gonzalez, Dr. Azael Mendoza, Dr. Norma Pavia-Ruz, Dr. Juan Carballo, Dr. Henry Puerta, Anuar Medina-Barreiro, Guillermo Guillermo-May, Wilbert Bibiano-Marin, Guillermo Chan, Yessica Gurubel, Felipe del Castillo Centeno, Juan Pablo, Alicia, Javier, Pauly

ENVS Department @ Emory University

• Jerry Byrd and Melissa Ivey

Dissertation Committee

• Dr. Levi Morran, Dr. Dave Civitello, Dr. Lance Waller, Dr. Pablo Manrique-Saide, Dr. Gonzalo Vazquez-Prokopec

GDBBS, IDASTP

